Key Points

  • Low-HSF1-pSer326 is a favorable prognostic protein in patients treated with BTZ-containing chemotherapy.

  • Addition of BTZ to standard chemotherapy significantly improves outcome in low-HSF1-pSer326 pediatric patients with AML.

Abstract

Bortezomib (BTZ) was recently evaluated in a randomized phase 3 clinical trial by the Children’s Oncology Group (COG) that compared standard chemotherapy (cytarabine, daunorubicin, and etoposide [ADE]) vs standard therapy with BTZ (ADEB) for de novo pediatric acute myeloid leukemia (AML). Although the study concluded that BTZ did not improve outcome overall, we examined patient subgroups benefiting from BTZ-containing chemotherapy using proteomic analyses. The proteasome inhibitor BTZ disrupts protein homeostasis and activates cytoprotective heat shock responses. Total heat shock factor 1 (HSF1) and phosphorylated HSF1 (HSF1-pSer326) were measured in leukemic cells from 483 pediatric patients using reverse phase protein arrays. HSF1-pSer326 phosphorylation was significantly lower in pediatric AML compared with CD34+ nonmalignant cells. We identified a strong correlation between HSF1-pSer326 expression and BTZ sensitivity. BTZ significantly improved outcome of patients with low-HSF1-pSer326 with a 5-year event-free survival of 44% (ADE) vs 67% for low-HSF1-pSer326 treated with ADEB (P = .019). To determine the effect of HSF1 expression on BTZ potency in vitro, cell viability with HSF1 gene variants that mimicked phosphorylated (S326A) and nonphosphorylated (S326E) HSF1-pSer326 were examined. Those with increased HSF1 phosphorylation showed clear resistance to BTZ vs those with wild-type or reduced HSF1-phosphorylation. We hypothesize that HSF1-pSer326 expression could identify patients who benefit from BTZ-containing chemotherapy.

REFERENCES

1.
Pui
CH
,
Carroll
WL
,
Meshinchi
S
,
Arceci
RJ
.
Biology, risk stratification, and therapy of pediatric acute leukemias: an update
.
J Clin Oncol
.
2011
;
29
(
5
):
551
-
565
.
2.
Estey
E
.
Acute myeloid leukemia: 2016 update on risk-stratification and management
.
Am J Hematol
.
2016
;
91
(
8
):
824
-
846
.
3.
Zwaan
CM
,
Kolb
EA
,
Reinhardt
D
, et al
.
Collaborative efforts driving progress in pediatric acute myeloid leukemia
.
J Clin Oncol
.
2015
;
33
(
27
):
2949
-
2962
.
4.
Moreau
P
,
Richardson
PG
,
Cavo
M
, et al
.
Proteasome inhibitors in multiple myeloma: 10 years later
.
Blood
.
2012
;
120
(
5
):
947
-
959
.
5.
Popat
R
,
Oakervee
HE
,
Hallam
S
, et al
.
Bortezomib, doxorubicin and dexamethasone (PAD) front-line treatment of multiple myeloma: updated results after long-term follow-up
.
Br J Haematol
.
2008
;
141
(
4
):
512
-
516
.
6.
Hambley
B
,
Caimi
PF
,
William
BM
.
Bortezomib for the treatment of mantle cell lymphoma: an update
.
Ther Adv Hematol
.
2016
;
7
(
4
):
196
-
208
.
7.
Attar
EC
,
De Angelo
DJ
,
Sirulnik
A
, et al
.
Addition of bortezomib (Velcade) to AML induction chemotherapy is well tolerated and results in a high complete remission rate
.
Blood
.
2005
;
106
(
11
):
2782
.
8.
Attar
EC
,
Johnson
JL
,
Amrein
PC
, et al
.
Bortezomib added to daunorubicin and cytarabine during induction therapy and to intermediate-dose cytarabine for consolidation in patients with previously untreated acute myeloid leukemia age 60 to 75 years: CALGB (Alliance) study 10502
.
J Clin Oncol
.
2013
;
31
(
7
):
923
-
929
.
9.
Attar
EC
,
De Angelo
DJ
,
Supko
JG
, et al
.
Phase I and pharmacokinetic study of bortezomib in combination with idarubicin and cytarabine in patients with acute myelogenous leukemia
.
Clin Cancer Res
.
2008
;
14
(
5
):
1446
-
1454
.
10.
Aplenc
R
,
Meshinchi
S
,
Sung
L
, et al
.
Bortezomib with standard chemotherapy for children with acute myeloid leukemia does not improve treatment outcomes: a report from the Children’s Oncology Group
.
Haematologica
.
2020
;
105
(
7
):
1879
-
1886
.
11.
Mendillo
ML
,
Santagata
S
,
Koeva
M
, et al
.
HSF1 drives a transcriptional program distinct from heat shock to support highly malignant human cancers
.
Cell
.
2012
;
150
(
3
):
549
-
562
.
12.
Dai
C
,
Whitesell
L
,
Rogers
AB
,
Lindquist
S
.
Heat shock factor 1 is a powerful multifaceted modifier of carcinogenesis
.
Cell
.
2007
;
130
(
6
):
1005
-
1018
.
13.
Dayalan Naidu
S
,
Sutherland
C
,
Zhang
Y
, et al
.
Heat shock factor 1 is a substrate for p38 mitogen-activated protein kinases
.
Mol Cell Biol
.
2016
;
36
(
18
):
2403
-
2417
.
14.
Tang
Z
,
Dai
S
,
He
Y
, et al
.
MEK guards proteome stability and inhibits tumor-suppressive amyloidogenesis via HSF1
.
Cell
.
2015
;
160
(
4
):
729
-
744
.
15.
Chou
SD
,
Prince
T
,
Gong
J
,
Calderwood
SK
.
mTOR is essential for the proteotoxic stress response, HSF1 activation and heat shock protein synthesis
.
PLoS One
.
2012
;
7
(
6
):
e39679
.
16.
Guettouche
T
,
Boellmann
F
,
Lane
WS
,
Voellmy
R
.
Analysis of phosphorylation of human heat shock factor 1 in cells experiencing a stress
.
BMC Biochem
.
2005
;
6
(
1
):
4
.
17.
Shah
SP
,
Nooka
AK
,
Jaye
DL
,
Bahlis
NJ
,
Lonial
S
,
Boise
LH
.
Bortezomib-induced heat shock response protects multiple myeloma cells and is activated by heat shock factor 1 serine 326 phosphorylation
.
Oncotarget
.
2016
;
7
(
37
):
59727
-
59741
.
18.
Sojka
DR
,
Gogler-Pigłowska
A
,
Vydra
N
, et al
.
Functional redundancy of HSPA1, HSPA2 and other HSPA proteins in non-small cell lung carcinoma (NSCLC); an implication for NSCLC treatment
.
Sci Rep
.
2019
;
9
(
1
):
14394
.
19.
Kawazoe
Y
,
Nakai
A
,
Tanabe
M
,
Nagata
K
.
Proteasome inhibition leads to the activation of all members of the heat-shock-factor family
.
Eur J Biochem
.
1998
;
255
(
2
):
356
-
362
.
20.
Heimberger
T
,
Andrulis
M
,
Riedel
S
, et al
.
The heat shock transcription factor 1 as a potential new therapeutic target in multiple myeloma
.
Br J Haematol
.
2013
;
160
(
4
):
465
-
476
.
21.
Shah
SP
,
Lonial
S
,
Boise
LH
.
When cancer fights back: multiple myeloma, proteasome inhibition, and the heat-shock response
.
Mol Cancer Res
.
2015
;
13
(
8
):
1163
-
1173
.
22.
Barna
J
,
Csermely
P
,
Vellai
T
.
Roles of heat shock factor 1 beyond the heat shock response
.
Cell Mol Life Sci
.
2018
;
75
(
16
):
2897
-
2916
.
23.
Hu
CW
,
Qiu
Y
,
Ligeralde
A
, et al
.
A quantitative analysis of heterogeneities and hallmarks in acute myelogenous leukaemia
.
Nat Biomed Eng
.
2019
;
3
(
11
):
889
-
901
.
24.
Kornblau
SM
,
Coombes
KR
.
Use of reverse phase protein microarrays to study protein expression in leukemia: technical and methodological lessons learned
.
Methods Mol Biol
.
2011
;
785
:
141
-
155
.
25.
Kornblau
SM
,
Singh
N
,
Qiu
Y
,
Chen
W
,
Zhang
N
,
Coombes
KR
.
Highly phosphorylated FOXO3A is an adverse prognostic factor in acute myeloid leukemia
.
Clin Cancer Res
.
2010
;
16
(
6
):
1865
-
1874
.
26.
Kornblau
SM
,
Tibes
R
,
Qiu
Y
, et al
.
Functional proteomic profiling of AML predicts response and survival
.
Blood
.
2009
;
113
(
1
):
154
-
164
.
27.
Tibes
R
,
Qiu
Y
,
Lu
Y
, et al
.
Reverse phase protein array: validation of a novel proteomic technology and utility for analysis of primary leukemia specimens and hematopoietic stem cells
.
Mol Cancer Ther
.
2006
;
5
(
10
):
2512
-
2521
.
28.
Hu
J
,
He
X
,
Baggerly
KA
,
Coombes
KR
,
Hennessy
BTJ
,
Mills
GB
.
Non-parametric quantification of protein lysate arrays
.
Bioinformatics
.
2007
;
23
(
15
):
1986
-
1994
.
29.
Neeley
ES
,
Kornblau
SM
,
Coombes
KR
,
Baggerly
KA
.
Variable slope normalization of reverse phase protein arrays
.
Bioinformatics
.
2009
;
25
(
11
):
1384
-
1389
.
30.
Neeley
ES
,
Baggerly
KA
,
Kornblau
SM
.
Surface adjustment of reverse phase protein arrays using positive control spots
.
Cancer Inform
.
2012
;
11
(
11
):
77
-
86
.
31.
Akbani
R
,
Ng
PKS
,
Werner
HMJ
, et al
.
A pan-cancer proteomic perspective on The Cancer Genome Atlas [published correction appears in Nat Commun. 2015;6:4852]
.
Nat Commun
.
2014
;
5
(
1
):
3887
.
32.
Smith
JL
,
Ries
RE
,
Hylkema
T
, et al
.
Comprehensive transcriptome profiling of cryptic CBFA2T3-GLIS2 fusion-positive AML defines novel therapeutic options: a COG and TARGET Pediatric AML Study
.
Clin Cancer Res
.
2020
;
26
(
3
):
726
-
737
.
33.
Kampen
KR
,
Ter Elst
A
,
Mahmud
H
, et al
.
Insights in dynamic kinome reprogramming as a consequence of MEK inhibition in MLL-rearranged AML
.
Leukemia
.
2014
;
28
(
3
):
589
-
599
.
34.
Yasuda
K
,
Hirohashi
Y
,
Mariya
T
, et al
.
Phosphorylation of HSF1 at serine 326 residue is related to the maintenance of gynecologic cancer stem cells through expression of HSP27
.
Oncotarget
.
2017
;
8
(
19
):
31540
-
31553
.
35.
Shah
SP
,
Nooka
AK
,
Lonial
S
,
Boise
LH
.
TG02 inhibits proteasome inhibitor-induced HSF1 serine 326 phosphorylation and heat shock response in multiple myeloma
.
Blood Adv
.
2017
;
1
(
21
):
1848
-
1853
.
36.
Genshaft
AS
,
Li
S
,
Gallant
CJ
, et al
.
Multiplexed, targeted profiling of single-cell proteomes and transcriptomes in a single reaction
.
Genome Biol
.
2016
;
17
(
1
):
188
.
37.
Vogel
C
,
Marcotte
EM
.
Insights into the regulation of protein abundance from proteomic and transcriptomic analyses
.
Nat Rev Genet
.
2012
;
13
(
4
):
227
-
232
.
38.
Payne
SH
.
The utility of protein and mRNA correlation
.
Trends Biochem Sci
.
2015
;
40
(
1
):
1
-
3
.
39.
Mun
DG
,
Bhin
J
,
Kim
S
, et al
.
Proteogenomic characterization of human early-onset gastric cancer
.
Cancer Cell
.
2019
;
35
(
1
):
111
-
124.e10
.
40.
Zhang
B
,
Wang
J
,
Wang
X
, et al;
NCI CPTAC
.
Proteogenomic characterization of human colon and rectal cancer
.
Nature
.
2014
;
513
(
7518
):
382
-
387
.
41.
Santagata
S
,
Mendillo
ML
,
Tang
YC
, et al
.
Tight coordination of protein translation and HSF1 activation supports the anabolic malignant state
.
Science
.
2013
;
341
(
6143
):
1238303
.
You do not currently have access to this content.

Sign in via your Institution

Sign In