Key Points

  • Expression of target molecules for pediatric AML immunotherapy differs from expression profiles in adult AML.

  • CD33/CLEC12A are preferential generic pediatric AML combinatorial immunotargets, and CD33/FLT3 are specific to KMT2A-mutated infant AML.

Abstract

Emerging immunotherapies such as chimeric antigen receptor T cells have advanced the treatment of acute lymphoblastic leukemia. In contrast, long-term control of acute myeloid leukemia (AML) cannot be achieved by single lineage-specific targeting while sparing benign hematopoiesis. In addition, heterogeneity of AML warrants combinatorial targeting, and several suitable immunotargets (HAVCR2/CD33 and HAVCR2/CLEC12A) have been identified in adult AML. However, clinical and biologic characteristics of AML differ between children and the elderly. Here, we analyzed 36 bone marrow (BM) samples of pediatric AML patients and 13 age-matched healthy donors using whole RNA sequencing of sorted CD45dim and CD34+CD38CD45dim BM populations and flow cytometry for surface expression of putative target antigens. Pediatric AML clusters apart from healthy myeloid BM precursors in principal-component analysis. Known immunotargets of adult AML, such as IL3RA, were not overexpressed in pediatric AML compared with healthy precursors by RNA sequencing. CD33 and CLEC12A were the most upregulated immunotargets on the RNA level and showed the highest surface expression on AML detected by flow cytometry. KMT2A-mutated infant AML clusters separately by RNA sequencing and overexpresses FLT3, and hence, CD33/FLT3 cotargeting is an additional specific option for this subgroup. CLEC12A and CD33/CLEC12Adouble-positive expression was absent in CD34+CD38CD45RACD90+ hematopoietic stem cells (HSCs) and nonhematopoietic tissue, while CD33 and FLT3 are expressed on HSCs. In summary, we show that expression of immunotargets in pediatric AML differs from known expression profiles in adult AML. We identify CLEC12A and CD33 as preferential generic combinatorial immunotargets in pediatric AML and CD33 and FLT3 as immunotargets specific for KMT2A-mutated infant AML.

REFERENCES

REFERENCES
1.
Döhner
H
,
Estey
E
,
Grimwade
D
, et al
.
Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel
.
Blood
.
2017
;
129
(
4
):
424
-
447
.
2.
Rasche
M
,
Zimmermann
M
,
Borschel
L
, et al
.
Successes and challenges in the treatment of pediatric acute myeloid leukemia: a retrospective analysis of the AML-BFM trials from 1987 to 2012
.
Leukemia
.
2018
;
32
(
10
):
2167
-
2177
.
3.
Maude
SL
,
Laetsch
TW
,
Buechner
J
, et al
.
Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia
.
N Engl J Med
.
2018
;
378
(
5
):
439
-
448
.
4.
Kantarjian
H
,
Stein
A
,
Gökbuget
N
, et al
.
Blinatumomab versus chemotherapy for advanced acute lymphoblastic leukemia
.
N Engl J Med
.
2017
;
376
(
9
):
836
-
847
.
5.
Blaeschke
F
,
Stenger
D
,
Kaeuferle
T
, et al
.
Induction of a central memory and stem cell memory phenotype in functionally active CD4+ and CD8+ CAR T cells produced in an automated good manufacturing practice system for the treatment of CD19+ acute lymphoblastic leukemia
.
Cancer Immunol Immunother
.
2018
;
67
(
7
):
1053
-
1066
.
6.
Stenger
D
,
Stief
TA
,
Kaeuferle
T
, et al
.
Endogenous TCR promotes in vivo persistence of CD19-CAR-T cells compared to a CRISPR/Cas9-mediated TCR knockout CAR
.
Blood
.
2020
;
136
(
12
):
1407
-
1418
.
7.
Masarova
L
,
Kantarjian
H
,
Ravandi
F
,
Sharma
P
,
Garcia-Manero
G
,
Daver
N
.
Update on immunotherapy in AML and MDS: monoclonal antibodies and checkpoint inhibitors paving the road for clinical practice
.
Adv Exp Med Biol
.
2018
;
995
:
97
-
116
.
8.
Liu
Y
,
Bewersdorf
JP
,
Stahl
M
,
Zeidan
AM
.
Immunotherapy in acute myeloid leukemia and myelodysplastic syndromes: The dawn of a new era?
Blood Rev
.
2019
;
34
:
67
-
83
.
9.
Perna
F
,
Berman
SH
,
Soni
RK
, et al
.
Integrating proteomics and transcriptomics for systematic combinatorial chimeric antigen receptor therapy of AML
.
Cancer Cell
.
2017
;
32
(
4
):
506
-
519.e505
.
10.
Haubner
S
,
Perna
F
,
Köhnke
T
, et al
.
Coexpression profile of leukemic stem cell markers for combinatorial targeted therapy in AML
.
Leukemia
.
2019
;
33
(
1
):
64
-
74
.
11.
Epperly
R
,
Gottschalk
S
,
Velasquez
MP
,
Harnessing
T
.
Harnessing T cells to target pediatric acute myeloid leukemia: CARs, BiTEs, and beyond
.
Children (Basel)
.
2020
;
7
(
2
):
E14
.
12.
Kenderian
SS
,
Ruella
M
,
Shestova
O
, et al
.
CD33-specific chimeric antigen receptor T cells exhibit potent preclinical activity against human acute myeloid leukemia
.
Leukemia
.
2015
;
29
(
8
):
1637
-
1647
.
13.
Ehninger
A
,
Kramer
M
,
Röllig
C
, et al
.
Distribution and levels of cell surface expression of CD33 and CD123 in acute myeloid leukemia
.
Blood Cancer J
.
2014
;
4
(
6
):
e218
.
14.
Gill
S
,
Tasian
SK
,
Ruella
M
, et al
.
Preclinical targeting of human acute myeloid leukemia and myeloablation using chimeric antigen receptor-modified T cells
.
Blood
.
2014
;
123
(
15
):
2343
-
2354
.
15.
Wang
J
,
Chen
S
,
Xiao
W
, et al
.
CAR-T cells targeting CLL-1 as an approach to treat acute myeloid leukemia
.
J Hematol Oncol
.
2018
;
11
(
1
):
7
.
16.
Kenderian
SS
,
Porter
DL
,
Gill
S
.
Chimeric antigen receptor T cells and hematopoietic cell transplantation: how not to put the CART before the horse
.
Biol Blood Marrow Transplant
.
2017
;
23
(
2
):
235
-
246
.
17.
Hanekamp
D
,
Denys
B
,
Kaspers
GJL
, et al
.
Leukaemic stem cell load at diagnosis predicts the development of relapse in young acute myeloid leukaemia patients
.
Br J Haematol
.
2018
;
183
(
3
):
512
-
516
.
18.
Rosnet
O
,
Bühring
HJ
,
Marchetto
S
, et al
.
Human FLT3/FLK2 receptor tyrosine kinase is expressed at the surface of normal and malignant hematopoietic cells
.
Leukemia
.
1996
;
10
(
2
):
238
-
248
.
19.
Jetani
H
,
Garcia-Cadenas
I
,
Nerreter
T
, et al
.
CAR T-cells targeting FLT3 have potent activity against FLT3-ITD+ AML and act synergistically with the FLT3-inhibitor crenolanib
.
Leukemia
.
2018
;
32
(
5
):
1168
-
1179
.
20.
Bolouri
H
,
Farrar
JE
,
Triche
T
Jr.
, et al
.
The molecular landscape of pediatric acute myeloid leukemia reveals recurrent structural alterations and age-specific mutational interactions [published correction appears in Nat Med. 2019;25:530]
.
Nat Med
.
2018
;
24
(
1
):
103
-
112
.
21.
Bennett
JM
,
Catovsky
D
,
Daniel
MT
, et al
.
Proposals for the classification of the acute leukaemias. French-American-British (FAB) co-operative group
.
Br J Haematol
.
1976
;
33
(
4
):
451
-
458
.
22.
Dobin
A
,
Davis
CA
,
Schlesinger
F
, et al
.
STAR: ultrafast universal RNA-seq aligner
.
Bioinformatics
.
2013
;
29
(
1
):
15
-
21
.
23.
Liao
Y
,
Smyth
GK
,
Shi
W
.
featureCounts: an efficient general purpose program for assigning sequence reads to genomic features
.
Bioinformatics
.
2014
;
30
(
7
):
923
-
930
.
24.
Love
MI
,
Huber
W
,
Anders
S
.
Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2
.
Genome Biol
.
2014
;
15
(
12
):
550
.
25.
Gu
M
,
Zwiebel
M
,
Ong
SH
, et al
.
RNAmut: robust identification of somatic mutations in acute myeloid leukemia using RNA-seq
.
Haematologica
.
2020
;
105
(
6
):
e290
-
e293
.
26.
Schmidt
T
,
Samaras
P
,
Frejno
M
, et al
.
ProteomicsDB
.
Nucleic Acids Res
.
2018
;
46
(
D1
):
D1271
-
D1281
.
27.
Samaras
P
,
Schmidt
T
,
Frejno
M
, et al
.
ProteomicsDB: a multi-omics and multi-organism resource for life science research
.
Nucleic Acids Res
.
2020
;
48
(
D1
):
D1153
-
D1163
.
28.
Majeti
R
,
Park
CY
,
Weissman
IL
.
Identification of a hierarchy of multipotent hematopoietic progenitors in human cord blood
.
Cell Stem Cell
.
2007
;
1
(
6
):
635
-
645
.
29.
Baum
CM
,
Weissman
IL
,
Tsukamoto
AS
,
Buckle
AM
,
Peault
B
.
Isolation of a candidate human hematopoietic stem-cell population
.
Proc Natl Acad Sci USA
.
1992
;
89
(
7
):
2804
-
2808
.
30.
Chao
MP
,
Seita
J
,
Weissman
IL
.
Establishment of a normal hematopoietic and leukemia stem cell hierarchy
.
Cold Spring Harb Symp Quant Biol
.
2008
;
73
(
0
):
439
-
449
.
31.
Bagger
FO
,
Kinalis
S
,
Rapin
N
.
BloodSpot: a database of healthy and malignant haematopoiesis updated with purified and single cell mRNA sequencing profiles
.
Nucleic Acids Res
.
2019
;
47
(
D1
):
D881
-
D885
.
32.
Wiseman
DH
,
Greystoke
BF
,
Somervaille
TC
.
The variety of leukemic stem cells in myeloid malignancy
.
Oncogene
.
2014
;
33
(
24
):
3091
-
3098
.
33.
Cummins
KD
,
Gill
S
.
Chimeric antigen receptor T-cell therapy for acute myeloid leukemia: how close to reality?
Haematologica
.
2019
;
104
(
7
):
1302
-
1308
.
34.
Li
S
,
Mason
CE
,
Melnick
A
.
Genetic and epigenetic heterogeneity in acute myeloid leukemia
.
Curr Opin Genet Dev
.
2016
;
36
:
100
-
106
.
35.
Majzner
RG
,
Heitzeneder
S
,
Mackall
CL
.
Harnessing the immunotherapy revolution for the treatment of childhood cancers
.
Cancer Cell
.
2017
;
31
(
4
):
476
-
485
.
36.
Ma
X
,
Liu
Y
,
Liu
Y
, et al
.
Pan-cancer genome and transcriptome analyses of 1,699 paediatric leukaemias and solid tumours
.
Nature
.
2018
;
555
(
7696
):
371
-
376
.
37.
Appelbaum
FR
,
Bernstein
ID
.
Gemtuzumab ozogamicin for acute myeloid leukemia
.
Blood
.
2017
;
130
(
22
):
2373
-
2376
.
38.
Wang
QS
,
Wang
Y
,
Lv
HY
, et al
.
Treatment of CD33-directed chimeric antigen receptor-modified T cells in one patient with relapsed and refractory acute myeloid leukemia
.
Mol Ther
.
2015
;
23
(
1
):
184
-
191
.
39.
Abadir
E
,
Gasiorowski
RE
,
Silveira
PA
,
Larsen
S
,
Clark
GJ
.
Is hematopoietic stem cell transplantation required to unleash the full potential of immunotherapy in acute myeloid leukemia?
J Clin Med
.
2020
;
9
(
2
):
E554
.
40.
Taussig
DC
,
Pearce
DJ
,
Simpson
C
, et al
.
Hematopoietic stem cells express multiple myeloid markers: implications for the origin and targeted therapy of acute myeloid leukemia
.
Blood
.
2005
;
106
(
13
):
4086
-
4092
.
41.
Kim
MY
,
Yu
KR
,
Kenderian
SS
, et al
.
Genetic inactivation of CD33 in hematopoietic stem cells to enable CAR T cell immunotherapy for acute myeloid leukemia
.
Cell
.
2018
;
173
(6):
1439
-
1453.e1419
.
42.
Zhang
H
,
Gan
WT
,
Hao
WG
,
Wang
PF
,
Li
ZY
,
Chang
LJ
.
Successful anti-CLL1 CAR T-cell therapy in secondary acute myeloid leukemia
.
Front Oncol
.
2020
;
10
:
685
.
43.
Ma
H
,
Padmanabhan
IS
,
Parmar
S
,
Gong
Y
.
Targeting CLL-1 for acute myeloid leukemia therapy
.
J Hematol Oncol
.
2019
;
12
(
1
):
41
.
44.
Shah
NN
,
Maatman
T
,
Hari
P
,
Johnson
B
.
Multitargeted CAR-T cell therapies for B-cell malignancies
.
Front Oncol
.
2019
;
9
:
146
.
45.
Kloss
CC
,
Condomines
M
,
Cartellieri
M
,
Bachmann
M
,
Sadelain
M
.
Combinatorial antigen recognition with balanced signaling promotes selective tumor eradication by engineered T cells
.
Nat Biotechnol
.
2013
;
31
(
1
):
71
-
75
.
46.
Roybal
KT
,
Williams
JZ
,
Morsut
L
, et al
.
Engineering T cells with customized therapeutic response programs using synthetic Notch receptors
.
Cell
.
2016
;
167
(2):
419
-
432.e416
.
47.
Tarlock
K
,
Alonzo
TA
,
Loken
MR
, et al
.
Disease characteristics and prognostic implications of cell-surface FLT3 receptor (CD135) expression in pediatric acute myeloid leukemia: a report from the Children’s Oncology Group
.
Clin Cancer Res
.
2017
;
23
(
14
):
3649
-
3656
.
48.
Daver
N
,
Schlenk
RF
,
Russell
NH
,
Levis
MJ
.
Targeting FLT3 mutations in AML: review of current knowledge and evidence
.
Leukemia
.
2019
;
33
(
2
):
299
-
312
.
You do not currently have access to this content.

Sign in via your Institution

Sign In