Key Points

  • iPSC-derived MKs and platelets share eQTLs and show enriched colocation with regulatory tracks important to MK biology.

  • These eQTLs are largely unique to MKs and platelets, with many not seen among 48 tissues in the Genotype-Tissue Expression project.

Abstract

Genome-wide association studies have identified common variants associated with platelet-related phenotypes, but because these variants are largely intronic or intergenic, their link to platelet biology is unclear. In 290 normal subjects from the GeneSTAR Research Study (110 African Americans [AAs] and 180 European Americans [EAs]), we generated whole-genome sequence data from whole blood and RNA sequence data from extracted nonribosomal RNA from 185 induced pluripotent stem cell-derived megakaryocyte (MK) cell lines (platelet precursor cells) and 290 blood platelet samples from these subjects. Using eigenMT software to select the peak single-nucleotide polymorphism (SNP) for each expressed gene, and meta-analyzing the results of AAs and EAs, we identify (q-value < 0.05) 946 cis-expression quantitative trait loci (eQTLs) in derived MKs and 1830 cis-eQTLs in blood platelets. Among the 57 eQTLs shared between the 2 tissues, the estimated directions of effect are very consistent (98.2% concordance). A high proportion of detected cis-eQTLs (74.9% in MKs and 84.3% in platelets) are unique to MKs and platelets compared with peak-associated SNP-expressed gene pairs of 48 other tissue types that are reported in version V7 of the Genotype-Tissue Expression Project. The locations of our identified eQTLs are significantly enriched for overlap with several annotation tracks highlighting genomic regions with specific functionality in MKs, including MK-specific DNAse hotspots, H3K27-acetylation marks, H3K4-methylation marks, enhancers, and superenhancers. These results offer insights into the regulatory signature of MKs and platelets, with significant overlap in genes expressed, eQTLs detected, and enrichment within known superenhancers relevant to platelet biology.

REFERENCES

REFERENCES
1.
Davì
G
,
Patrono
C
.
Platelet activation and atherothrombosis
.
N Engl J Med
.
2007
;
357
(
24
):
2482
-
2494
.
2.
Colman
R
,
Clowes
A
,
George
J
,
Hirsh
J
,
Marder
V
. Overview of hemostasis. In:
Colman
RWHJ
,
Marder
VJ
,
Clowes
AW
,
George
JN
, eds.
Hemostasis and Thrombosis Basic Principles and Practice
,
Philadelphia, PA
:
Lippincott Williams & Wilkins
;
2001
:
3
-
16
.
3.
Ashby
B
,
Colman
R
,
Daniel
J
,
Kunapuli
S
,
Smith
J
. Platelet stimulatory and inhibitory receptors. In:
Colman
RW
,
Hirsh
J
,
Marder
VJ
,
Clowes
AW
,
George
J
, eds.
Hemostasis and Thrombosis Basic Principles and Clinical Practice
,
Philadelphia, PA
:
Lippincott Williams & Wilkins
;
2001
:
505
-
520
.
4.
Abrams
C
,
Brass
L
.
Platelet signal transduction
. In:
Colman
RW
,
Hirsh
J
,
Marder
VJ
,
Clowes
AW
,
George
J
, eds.
Hemostasis and Thrombosis Basic Principles and Clinical Practice
.
Philadelphia, PA
:
Lippincott Williams & Wilkins
;
2001
:541-559.
5.
Marcus
AJ
,
Safier
LB
.
Thromboregulation: multicellular modulation of platelet reactivity in hemostasis and thrombosis
.
FASEB J
.
1993
;
7
(
6
):
516
-
522
.
6.
Shaw
E
,
Tofler
GH
.
Circadian rhythm and cardiovascular disease
.
Curr Atheroscler Rep
.
2009
;
11
(
4
):
289
-
295
.
7.
Faraday
N
,
Yanek
LR
,
Mathias
R
, et al
.
Heritability of platelet responsiveness to aspirin in activation pathways directly and indirectly related to cyclooxygenase-1
.
Circulation
.
2007
;
115
(
19
):
2490
-
2496
.
8.
Faraday
N
,
Yanek
LR
,
Yang
XP
, et al
.
Identification of a specific intronic PEAR1 gene variant associated with greater platelet aggregability and protein expression
.
Blood
.
2011
;
118
(
12
):
3367
-
3375
.
9.
Johnson
AD
,
Yanek
LR
,
Chen
MH
, et al
.
Genome-wide meta-analyses identifies seven loci associated with platelet aggregation in response to agonists
.
Nat Genet
.
2010
;
42
(
7
):
608
-
613
.
10.
Kim
Y
,
Suktitipat
B
,
Yanek
LR
, et al
.
Targeted deep resequencing identifies coding variants in the PEAR1 gene that play a role in platelet aggregation
.
PLoS One
.
2013
;
8
(
5
):
e64179
.
11.
Qayyum
R
,
Becker
LC
,
Becker
DM
, et al
.
Genome-wide association study of platelet aggregation in African Americans
.
BMC Genet
.
2015
;
16
(
1
):
58
.
12.
Eicher
JD
,
Lettre
G
,
Johnson
AD
.
The genetics of platelet count and volume in humans
.
Platelets
.
2018
;
29
(
2
):
125
-
130
.
13.
Schubert
P
,
Devine
DV
.
De novo protein synthesis in mature platelets: a consideration for transfusion medicine
.
Vox Sang
.
2010
;
99
(
2
):
112
-
122
.
14.
Rowley
JW
,
Oler
AJ
,
Tolley
ND
, et al
.
Genome-wide RNA-seq analysis of human and mouse platelet transcriptomes [published correction appears in Blood. 2014;123(24):3843]
.
Blood
.
2011
;
118
(
14
):
e101
-
e111
.
15.
Eicher
JD
,
Wakabayashi
Y
,
Vitseva
O
, et al
.
Characterization of the platelet transcriptome by RNA sequencing in patients with acute myocardial infarction
.
Platelets
.
2016
;
27
(
3
):
230
-
239
.
16.
Bray
PF
,
McKenzie
SE
,
Edelstein
LC
, et al
.
The complex transcriptional landscape of the anucleate human platelet
.
BMC Genomics
.
2013
;
14
(
1
):
1
.
17.
Liu
Y
,
Wang
Y
,
Gao
Y
, et al
.
Efficient generation of megakaryocytes from human induced pluripotent stem cells using food and drug administration-approved pharmacological reagents
.
Stem Cells Transl Med
.
2015
;
4
(
4
):
309
-
319
.
18.
Wheeler
HE
,
Shah
KP
,
Brenner
J
, et al;
GTEx Consortium
.
Survey of the heritability and sparse architecture of gene expression traits across human tissues
.
PLoS Genet
.
2016
;
12
(
11
):
e1006423
.
19.
Liberzon
A
,
Subramanian
A
,
Pinchback
R
,
Thorvaldsdóttir
H
,
Tamayo
P
,
Mesirov
JP
.
Molecular signatures database (MSigDB) 3.0
.
Bioinformatics
.
2011
;
27
(
12
):
1739
-
1740
.
20.
Vaidya
D
,
Yanek
LR
,
Moy
TF
,
Pearson
TA
,
Becker
LC
,
Becker
DM
.
Incidence of coronary artery disease in siblings of patients with premature coronary artery disease: 10 years of follow-up
.
Am J Cardiol
.
2007
;
100
(
9
):
1410
-
1415
.
21.
Becker
LC
,
Becker
DM
,
Pearson
TA
,
Fintel
DJ
,
Links
J
,
Frank
TL
.
Screening of asymptomatic siblings of patients with premature coronary artery disease
.
Circulation
.
1987
;
75
(
3 Pt 2
):
II14
-
II17
.
22.
Becker
DM
,
Segal
J
,
Vaidya
D
, et al
.
Sex differences in platelet reactivity and response to low-dose aspirin therapy
.
JAMA
.
2006
;
295
(
12
):
1420
-
1427
.
23.
Taliun
D
,
Harris
DN
,
Kessler
MD
, et al
.
Sequencing of 53,831 diverse genomes from the NHLBI TOPMed Program [published online ahead of print 6 March 2019]
.
BioRxiv
. doi:https://doi.org/10.1101/563866.
24.
Londin
ER
,
Hatzimichael
E
,
Loher
P
, et al
.
The human platelet: strong transcriptome correlations among individuals associate weakly with the platelet proteome
.
Biol Direct
.
2014
;
9
(
1
):
3
.
25.
Davis
JR
,
Fresard
L
,
Knowles
DA
, et al
.
An efficient multiple-testing adjustment for eQTL studies that accounts for linkage disequilibrium between variants
.
Am J Hum Genet
.
2016
;
98
(
1
):
216
-
224
.
26.
Alexa
A
,
Rahnenfuhrer
J
. topGO: enrichment analysis for gene ontology.
2019
. R package version 2.37.0. https://bioconductor.org/packages/release/bioc/html/topGO.html. Accessed August 2020.
27.
Kanai
M
,
Akiyama
M
,
Takahashi
A
, et al
.
Genetic analysis of quantitative traits in the Japanese population links cell types to complex human diseases
.
Nat Genet
.
2018
;
50
(
3
):
390
-
400
.
28.
Astle
WJ
,
Elding
H
,
Jiang
T
, et al
.
The allelic landscape of human blood cell trait variation and links to common complex disease
.
Cell
.
2016
;
167
(
5
):
1415
-
1429
.
29.
Lewis
JP
,
Ryan
K
,
O’Connell
JR
, et al
.
Genetic variation in PEAR1 is associated with platelet aggregation and cardiovascular outcomes
.
Circ Cardiovasc Genet
.
2013
;
6
(
2
):
184
-
192
.
30.
Chen
MH
,
Yanek
LR
,
Backman
JD
, et al
.
Exome-chip meta-analysis identifies association between variation in ANKRD26 and platelet aggregation
.
Platelets
.
2019
;
30
(
2
):
164
-
173
.
31.
Keramati
AR
,
Yanek
LR
,
Iyer
K
, et al
.
Targeted deep sequencing of the PEAR1 locus for platelet aggregation in European and African American families
.
Platelets
.
2019
;
30
(
3
):
380
-
386
.
32.
Keramati
AR
,
Chen
M-H
,
Rodriguez
BAT
, et al
. Genome sequencing unveils a new regulatory landscape of platelet reactivity [published online ahead of print 16 May 2019].
BioRxiv
. doi:https://doi.org/10.1101/621565.
33.
Simon
LM
,
Chen
ES
,
Edelstein
LC
, et al
.
Integrative multi-omic analysis of human platelet eQTLs reveals alternative start site in mitofusin 2
.
Am J Hum Genet
.
2016
;
98
(
5
):
883
-
897
.
34.
Kammers
K
,
Taub
MA
,
Ruczinski
I
, et al
.
Integrity of induced pluripotent stem cell (iPSC) derived megakaryocytes as assessed by genetic and transcriptomic analysis
.
PLoS One
.
2017
;
12
(
1
):
e0167794
.
35.
Thushara
RM
,
Hemshekhar
M
,
Basappa
,
Kemparaju
K
,
Rangappa
KS
,
Girish
KS
.
Biologicals, platelet apoptosis and human diseases: an outlook
.
Crit Rev Oncol Hematol
.
2015
;
93
(
3
):
149
-
158
.
36.
Boulaftali
Y
,
Ho-Tin-Noe
B
,
Pena
A
, et al
.
Platelet protease nexin-1, a serpin that strongly influences fibrinolysis and thrombolysis
.
Circulation
.
2011
;
123
(
12
):
1326
-
1334
.
37.
Boulaftali
Y
,
Adam
F
,
Venisse
L
, et al
.
Anticoagulant and antithrombotic properties of platelet protease nexin-1
.
Blood
.
2010
;
115
(
1
):
97
-
106
.
38.
Nath
AP
,
Ritchie
SC
,
Grinberg
NF
, et al
.
Multivariate genome-wide association analysis of a cytokine network reveals variants with widespread immune, haematological, and cardiometabolic pleiotropy
.
Am J Hum Genet
.
2019
;
105
(
6
):
1076
-
1090
.
39.
Despotovic
JM
,
McGann
PT
,
Smeltzer
M
,
Aygun
B
,
Ware
RE
.
RHD zygosity predicts degree of platelet response to anti-D immune globulin treatment in children with immune thrombocytopenia
.
Pediatr Blood Cancer
.
2013
;
60
(
9
):
E106
-
E108
.
40.
Goggs
R
,
Savage
JS
,
Mellor
H
,
Poole
AW
.
The small GTPase Rif is dispensable for platelet filopodia generation in mice
.
PLoS One
.
2013
;
8
(
1
):
e54663
.
You do not currently have access to this content.

Sign in via your Institution

Sign In