Key Points

  • IDH1-mutant mice develop myeloid dysplasia with anemia, ineffective erythropoiesis, and increased immature progenitors and erythroblasts.

  • D-2-hydroxyglutarate produced by mutated IDH1 inhibits enzymatic activity of oxoglutarate dehydrogenase, reducing succinyl-CoA production and thereby impairing heme synthesis.

Abstract

Isocitrate dehydrogenase (IDH) mutations are common genetic alterations in myeloid disorders, including acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS). Epigenetic changes, including abnormal histone and DNA methylation, have been implicated in the pathogenic build-up of hematopoietic progenitors, but it is still unclear whether and how IDH mutations themselves affect hematopoiesis. Here, we show that IDH1-mutant mice develop myeloid dysplasia in that these animals exhibit anemia, ineffective erythropoiesis, and increased immature progenitors and erythroblasts. In erythroid cells of these mice, D-2-hydroxyglutarate, an aberrant metabolite produced by the mutant IDH1 enzyme, inhibits oxoglutarate dehydrogenase activity and diminishes succinyl–coenzyme A (CoA) production. This succinyl-CoA deficiency attenuates heme biosynthesis in IDH1-mutant hematopoietic cells, thus blocking erythroid differentiation at the late erythroblast stage and the erythroid commitment of hematopoietic stem cells, while the exogenous succinyl-CoA or 5-ALA rescues erythropoiesis in IDH1-mutant erythroid cells. Heme deficiency also impairs heme oxygenase-1 expression, which reduces levels of important heme catabolites such as biliverdin and bilirubin. These deficits result in accumulation of excessive reactive oxygen species that induce the cell death of IDH1-mutant erythroid cells. Our results clearly show the essential role of IDH1 in normal erythropoiesis and describe how its mutation leads to myeloid disorders. These data thus have important implications for the devising of new treatments for IDH-mutant tumors.

REFERENCES

REFERENCES
1.
Im
AP
,
Sehgal
AR
,
Carroll
MP
, et al
.
DNMT3A and IDH mutations in acute myeloid leukemia and other myeloid malignancies: associations with prognosis and potential treatment strategies [published correction appears in Leukemia. 2015;29(2):516]
.
Leukemia
.
2014
;
28
(
9
):
1774
-
1783
.
2.
Pardanani
A
,
Patnaik
MM
,
Lasho
TL
, et al
.
Recurrent IDH mutations in high-risk myelodysplastic syndrome or acute myeloid leukemia with isolated del(5q)
.
Leukemia
.
2010
;
24
(
7
):
1370
-
1372
.
3.
Kosmider
O
,
Gelsi-Boyer
V
,
Slama
L
, et al
.
Mutations of IDH1 and IDH2 genes in early and accelerated phases of myelodysplastic syndromes and MDS/myeloproliferative neoplasms
.
Leukemia
.
2010
;
24
(
5
):
1094
-
1096
.
4.
Patnaik
MM
,
Hanson
CA
,
Hodnefield
JM
, et al
.
Differential prognostic effect of IDH1 versus IDH2 mutations in myelodysplastic syndromes: a Mayo Clinic study of 277 patients
.
Leukemia
.
2012
;
26
(
1
):
101
-
105
.
5.
Cairns
RA
,
Mak
TW
.
Oncogenic isocitrate dehydrogenase mutations: mechanisms, models, and clinical opportunities
.
Cancer Discov
.
2013
;
3
(
7
):
730
-
741
.
6.
Sasaki
M
,
Knobbe
CB
,
Munger
JC
, et al
.
IDH1(R132H) mutation increases murine haematopoietic progenitors and alters epigenetics
.
Nature
.
2012
;
488
(
7413
):
656
-
659
.
7.
Inoue
S
,
Li
WY
,
Tseng
A
, et al
.
Mutant IDH1 downregulates ATM and alters DNA repair and sensitivity to DNA damage independent of TET2
.
Cancer Cell
.
2016
;
30
(
2
):
337
-
348
.
8.
DiNardo
CD
,
Stein
EM
,
de Botton
S
, et al
.
Durable remissions with ivosidenib in IDH1-mutated relapsed or refractory AML
.
N Engl J Med
.
2018
;
378
(
25
):
2386
-
2398
.
9.
Norsworthy
KJ
,
Luo
L
,
Hsu
V
, et al
.
FDA approval summary: ivosidenib for relapsed or refractory acute myeloid leukemia with an isocitrate dehydrogenase-1 mutation
.
Clin Cancer Res
.
2019
;
25
(
11
):
3205
-
3209
.
10.
Stein
EM
,
DiNardo
CD
,
Pollyea
DA
, et al
.
Enasidenib in mutant IDH2 relapsed or refractory acute myeloid leukemia
.
Blood
.
2017
;
130
(
6
):
722
-
731
.
11.
Yen
K
,
Travins
J
,
Wang
F
, et al
.
AG-221, a First-in-Class Therapy Targeting Acute Myeloid Leukemia Harboring Oncogenic IDH2 Mutations
.
Cancer Discov
.
2017
;
7
(
5
):
478
-
493
.
12.
Akashi
K
,
Traver
D
,
Miyamoto
T
,
Weissman
IL
.
A clonogenic common myeloid progenitor that gives rise to all myeloid lineages
.
Nature
.
2000
;
404
(
6774
):
193
-
197
.
13.
Manz
MG
,
Traver
D
,
Miyamoto
T
,
Weissman
IL
,
Akashi
K
.
Dendritic cell potentials of early lymphoid and myeloid progenitors
.
Blood
.
2001
;
97
(
11
):
3333
-
3341
.
14.
Kondo
M
,
Weissman
IL
,
Akashi
K
.
Identification of clonogenic common lymphoid progenitors in mouse bone marrow
.
Cell
.
1997
;
91
(
5
):
661
-
672
.
15.
Iwasaki
H
,
Akashi
K
.
Myeloid lineage commitment from the hematopoietic stem cell
.
Immunity
.
2007
;
26
(
6
):
726
-
740
.
16.
Thol
F
,
Weissinger
EM
,
Krauter
J
, et al
.
IDH1 mutations in patients with myelodysplastic syndromes are associated with an unfavorable prognosis
.
Haematologica
.
2010
;
95
(
10
):
1668
-
1674
.
17.
Green
A
,
Beer
P
.
Somatic mutations of IDH1 and IDH2 in the leukemic transformation of myeloproliferative neoplasms
.
N Engl J Med
.
2010
;
362
(
4
):
369
-
370
.
18.
Molenaar
RJ
,
Thota
S
,
Nagata
Y
, et al
.
Clinical and biological implications of ancestral and non-ancestral IDH1 and IDH2 mutations in myeloid neoplasms
.
Leukemia
.
2015
;
29
(
11
):
2134
-
2142
.
19.
Aref
S
.
Prevalence and clinical effect of IDH1 and IDH2 mutations among cytogenetically normal acute myeloid leukemia patients
.
Clin Lymphoma Myeloma Leuk
.
2015
;
15
(
9
):
550
-
555
.
20.
Yamaguchi
S
,
Iwanaga
E
,
Tokunaga
K
, et al
.
IDH1 and IDH2 mutations confer an adverse effect in patients with acute myeloid leukemia lacking the NPM1 mutation
.
Eur J Haematol
.
2014
;
92
(
6
):
471
-
477
.
21.
Chotirat
S
,
Thongnoppakhun
W
,
Promsuwicha
O
,
Boonthimat
C
,
Auewarakul
CU
.
Molecular alterations of isocitrate dehydrogenase 1 and 2 (IDH1 and IDH2) metabolic genes and additional genetic mutations in newly diagnosed acute myeloid leukemia patients
.
J Hematol Oncol
.
2012
;
5
(
1
):
5
.
22.
Patel
KP
,
Ravandi
F
,
Ma
D
, et al
.
Acute myeloid leukemia with IDH1 or IDH2 mutation: frequency and clinicopathologic features
.
Am J Clin Pathol
.
2011
;
135
(
1
):
35
-
45
.
23.
Hsu
P
,
Qu
CK
.
Metabolic plasticity and hematopoietic stem cell biology
.
Curr Opin Hematol
.
2013
;
20
(
4
):
289
-
294
.
24.
Yu
WM
,
Liu
X
,
Shen
J
, et al
.
Metabolic regulation by the mitochondrial phosphatase PTPMT1 is required for hematopoietic stem cell differentiation
.
Cell Stem Cell
.
2013
;
12
(
1
):
62
-
74
.
25.
Parker
SJ
,
Metallo
CM
.
Metabolic consequences of oncogenic IDH mutations
.
Pharmacol Ther
.
2015
;
152
:
54
-
62
.
26.
Chung
J
,
Chen
C
,
Paw
BH
.
Heme metabolism and erythropoiesis
.
Curr Opin Hematol
.
2012
;
19
(
3
):
156
-
162
.
27.
Burch
JS
,
Marcero
JR
,
Maschek
JA
, et al
.
Glutamine via alpha-ketoglutarate dehydrogenase provides succinyl-CoA for heme synthesis during erythropoiesis
.
Blood
.
2018
;
132
(
10
):
987
-
998
.
28.
Zhao
S
,
Lin
Y
,
Xu
W
, et al
.
Glioma-derived mutations in IDH1 dominantly inhibit IDH1 catalytic activity and induce HIF-1alpha
.
Science
.
2009
;
324
(
5924
):
261
-
265
.
29.
Socolovsky
M
,
Nam
H
,
Fleming
MD
,
Haase
VH
,
Brugnara
C
,
Lodish
HF
.
Ineffective erythropoiesis in Stat5a(−/−)5b(−/−) mice due to decreased survival of early erythroblasts
.
Blood
.
2001
;
98
(
12
):
3261
-
3273
.
30.
Jacquel
A
,
Herrant
M
,
Defamie
V
, et al
.
A survey of the signaling pathways involved in megakaryocytic differentiation of the human K562 leukemia cell line by molecular and c-DNA array analysis
.
Oncogene
.
2006
;
25
(
5
):
781
-
794
.
31.
Beauchemin
H
,
Blouin
MJ
,
Trudel
M
.
Differential regulatory and compensatory responses in hematopoiesis/erythropoiesis in alpha- and beta-globin hemizygous mice
.
J Biol Chem
.
2004
;
279
(
19
):
19471
-
19480
.
32.
Kirk
RG
,
Andrews
SB
,
Lee
P
.
An X-ray microanalysis study of cation changes during development in erythropoietic cells
.
Scan Electron Microsc
.
1983
;(
Pt 2
):
793
-
800
.
33.
Layer
G
,
Reichelt
J
,
Jahn
D
,
Heinz
DW
.
Structure and function of enzymes in heme biosynthesis
.
Protein Sci
.
2010
;
19
(
6
):
1137
-
1161
.
34.
Araujo
JA
,
Zhang
M
,
Yin
F
.
Heme oxygenase-1, oxidation, inflammation, and atherosclerosis
.
Front Pharmacol
.
2012
;
3
:
119
.
35.
Medeiros
BC
,
Fathi
AT
,
DiNardo
CD
,
Pollyea
DA
,
Chan
SM
,
Swords
R
.
Isocitrate dehydrogenase mutations in myeloid malignancies
.
Leukemia
.
2017
;
31
(
2
):
272
-
281
.
36.
Ye
M
,
Zhang
H
,
Yang
H
, et al
.
Hematopoietic Differentiation Is Required for Initiation of Acute Myeloid Leukemia
.
Cell Stem Cell
.
2015
;
17
(
5
):
611
-
623
.
37.
Knutson
M
,
Wessling-Resnick
M
.
Iron metabolism in the reticuloendothelial system
.
Crit Rev Biochem Mol Biol
.
2003
;
38
(
1
):
61
-
88
.
38.
Li
F
,
He
X
,
Ye
D
, et al
.
NADP(+)-IDH mutations promote hypersuccinylation that impairs mitochondria respiration and induces apoptosis resistance
.
Mol Cell
.
2015
;
60
(
4
):
661
-
675
.
39.
Cordes
T
,
Wallace
M
,
Michelucci
A
, et al
.
Immunoresponsive gene 1 and itaconate inhibit succinate dehydrogenase to modulate intracellular succinate levels
.
J Biol Chem
.
2016
;
291
(
27
):
14274
-
14284
.
40.
Furuyama
K
,
Sassa
S
.
Interaction between succinyl CoA synthetase and the heme-biosynthetic enzyme ALAS-E is disrupted in sideroblastic anemia
.
J Clin Invest
.
2000
;
105
(
6
):
757
-
764
.
41.
Lampropoulou
V
,
Sergushichev
A
,
Bambouskova
M
, et al
.
Itaconate links inhibition of succinate dehydrogenase with macrophage metabolic remodeling and regulation of inflammation
.
Cell Metab
.
2016
;
24
(
1
):
158
-
166
.
42.
Labbe
RF
,
Kurumada
T
,
Onisawa
J
.
The role of succinyl-CoA synthetase in the control of heme biosynthesis
.
Biochim Biophys Acta
.
1965
;
111
(
2
):
403
-
415
.
43.
Mense
SM
,
Zhang
L
.
Heme: a versatile signaling molecule controlling the activities of diverse regulators ranging from transcription factors to MAP kinases
.
Cell Res
.
2006
;
16
(
8
):
681
-
692
.
44.
Fujiwara
T
,
Harigae
H
.
Biology of heme in mammalian erythroid cells and related disorders
.
BioMed Res Int
.
2015
;
2015
:
278536
.
45.
Zenke-Kawasaki
Y
,
Dohi
Y
,
Katoh
Y
, et al
.
Heme induces ubiquitination and degradation of the transcription factor Bach1
.
Mol Cell Biol
.
2007
;
27
(
19
):
6962
-
6971
.
46.
Itoh-Nakadai
A
,
Matsumoto
M
,
Kato
H
, et al
.
A Bach2-Cebp gene regulatory network for the commitment of multipotent hematopoietic progenitors
.
Cell Rep
.
2017
;
18
(
10
):
2401
-
2414
.
47.
Ito
K
,
Hirao
A
,
Arai
F
, et al
.
Reactive oxygen species act through p38 MAPK to limit the lifespan of hematopoietic stem cells [published correction appears in Nat Med. 2010;16(1):129]
.
Nat Med
.
2006
;
12
(
4
):
446
-
451
.
48.
Jang
YY
,
Sharkis
SJ
.
A low level of reactive oxygen species selects for primitive hematopoietic stem cells that may reside in the low-oxygenic niche
.
Blood
.
2007
;
110
(
8
):
3056
-
3063
.
49.
Cao
YA
,
Wagers
AJ
,
Karsunky
H
, et al
.
Heme oxygenase-1 deficiency leads to disrupted response to acute stress in stem cells and progenitors
.
Blood
.
2008
;
112
(
12
):
4494
-
4502
.
You do not currently have access to this content.

Sign in via your Institution

Sign In