Key Points

  • Gabbr1 is involved in HSPC proliferation and B-cell differentiation.

  • Treatment of human UCB progenitors with GABBR1 agonist results in increased long-term engraftment after transplantation.

Abstract

Hematopoietic and nervous systems are linked via innervation of bone marrow (BM) niche cells. Hematopoietic stem/progenitor cells (HSPCs) express neurotransmitter receptors, such as the γ-aminobutyric acid (GABA) type B receptor subunit 1 (GABBR1), suggesting that HSPCs could be directly regulated by neurotransmitters like GABA that directly bind to GABBR1. We performed imaging mass spectrometry and found that the endogenous GABA molecule is regionally localized and concentrated near the endosteum of the BM niche. To better understand the role of GABBR1 in regulating HSPCs, we generated a constitutive Gabbr1-knockout mouse model. Analysis revealed that HSPC numbers were significantly reduced in the BM compared with wild-type littermates. Moreover, Gabbr1-null hematopoietic stem cells had diminished capacity to reconstitute irradiated recipients in a competitive transplantation model. Gabbr1-null HSPCs were less proliferative under steady-state conditions and upon stress. Colony-forming unit assays demonstrated that almost all Gabbr1-null HSPCs were in a slow or noncycling state. In vitro differentiation of Gabbr1-null HSPCs in cocultures produced fewer overall cell numbers with significant defects in differentiation and expansion of the B-cell lineage. To determine whether a GABBR1 agonist could stimulate human umbilical cord blood (UCB) HSPCs, we performed brief ex vivo treatment prior to transplant into immunodeficient mice, with significant increases in long-term engraftment of HSPCs compared with GABBR1 antagonist or vehicle treatments. Our results indicate a direct role for GABBR1 in HSPC proliferation, and identify a potential target to improve HSPC engraftment in clinical transplantation.

REFERENCES

REFERENCES
1.
Orkin
SH
,
Zon
LI
.
Hematopoiesis: an evolving paradigm for stem cell biology
.
Cell
.
2008
;
132
(
4
):
631
-
644
.
2.
Wei
Q
,
Frenette
PS
.
Niches for hematopoietic stem cells and their progeny
.
Immunity
.
2018
;
48
(
4
):
632
-
648
.
3.
Agarwala
S
,
Tamplin
OJ
.
Neural crossroads in the hematopoietic stem cell niche
.
Trends Cell Biol
.
2018
;
28
(
12
):
987
-
998
.
4.
Méndez-Ferrer
S
,
Lucas
D
,
Battista
M
,
Frenette
PS
.
Haematopoietic stem cell release is regulated by circadian oscillations
.
Nature
.
2008
;
452
(
7186
):
442
-
447
.
5.
Steidl
U
,
Bork
S
,
Schaub
S
, et al
.
Primary human CD34+ hematopoietic stem and progenitor cells express functionally active receptors of neuromediators
.
Blood
.
2004
;
104
(
1
):
81
-
88
.
6.
Spiegel
A
,
Shivtiel
S
,
Kalinkovich
A
, et al
.
Catecholaminergic neurotransmitters regulate migration and repopulation of immature human CD34+ cells through Wnt signaling
.
Nat Immunol
.
2007
;
8
(
10
):
1123
-
1131
.
7.
Kalinkovich
A
,
Spiegel
A
,
Shivtiel
S
, et al
.
Blood-forming stem cells are nervous: direct and indirect regulation of immature human CD34+ cells by the nervous system
.
Brain Behav Immun
.
2009
;
23
(
8
):
1059
-
1065
.
8.
Cosentino
M
,
Marino
F
,
Maestroni
GJM
.
Sympathoadrenergic modulation of hematopoiesis: a review of available evidence and of therapeutic perspectives
.
Front Cell Neurosci
.
2015
;
9
:
302
.
9.
Kwan
W
,
Cortes
M
,
Frost
I
, et al
.
The central nervous system regulates embryonic HSPC production via stress-responsive glucocorticoid receptor signaling
.
Cell Stem Cell
.
2016
;
19
(
3
):
370
-
382
.
10.
Goolsby
J
,
Marty
MC
,
Heletz
D
, et al
.
Hematopoietic progenitors express neural genes
.
Proc Natl Acad Sci USA
.
2003
;
100
(
25
):
14926
-
14931
.
11.
Xu
C
,
Zhang
W
,
Rondard
P
,
Pin
JP
,
Liu
J
.
Complex GABAB receptor complexes: how to generate multiple functionally distinct units from a single receptor
.
Front Pharmacol
.
2014
;
5
:
12
.
12.
Chapman
RW
,
Hey
JA
,
Rizzo
CA
,
Bolser
DC
.
GABAB receptors in the lung
.
Trends Pharmacol Sci
.
1993
;
14
(
1
):
26
-
29
.
13.
Calver
AR
,
Medhurst
AD
,
Robbins
MJ
, et al
.
The expression of GABA(B1) and GABA(B2) receptor subunits in the cNS differs from that in peripheral tissues
.
Neuroscience
.
2000
;
100
(
1
):
155
-
170
.
14.
Zangiacomi
V
,
Balon
N
,
Maddens
S
,
Tiberghien
P
,
Versaux-Botteri
C
,
Deschaseaux
F
.
Human cord blood-derived hematopoietic and neural-like stem/progenitor cells are attracted by the neurotransmitter GABA
.
Stem Cells Dev
.
2009
;
18
(
9
):
1369
-
1378
.
15.
Mombaerts
P
,
Iacomini
J
,
Johnson
RS
,
Herrup
K
,
Tonegawa
S
,
Papaioannou
VE
.
RAG-1-deficient mice have no mature B and T lymphocytes
.
Cell
.
1992
;
68
(
5
):
869
-
877
.
16.
Schuler
V
,
Lüscher
C
,
Blanchet
C
, et al
.
Epilepsy, hyperalgesia, impaired memory, and loss of pre- and postsynaptic GABA(B) responses in mice lacking GABA(B(1))
.
Neuron
.
2001
;
31
(
1
):
47
-
58
.
17.
Prosser
HM
,
Gill
CH
,
Hirst
WD
, et al
.
Epileptogenesis and enhanced prepulse inhibition in GABA(B1)-deficient mice
.
Mol Cell Neurosci
.
2001
;
17
(
6
):
1059
-
1070
.
18.
Quéva
C
,
Bremner-Danielsen
M
,
Edlund
A
, et al
.
Effects of GABA agonists on body temperature regulation in GABA(B(1))-/- mice
.
Br J Pharmacol
.
2003
;
140
(
2
):
315
-
322
.
19.
Zhu
F
,
Feng
M
,
Sinha
R
, et al
.
The GABA receptor GABRR1 is expressed on and functional in hematopoietic stem cells and megakaryocyte progenitors
.
Proc Natl Acad Sci USA
.
2019
;
116
(
37
):
18416
-
18422
.
20.
Seita
J
,
Sahoo
D
,
Rossi
DJ
, et al
.
Gene Expression Commons: an open platform for absolute gene expression profiling
.
PLoS One
.
2012
;
7
(
7
):
e40321
.
21.
Gazit
R
,
Garrison
BS
,
Rao
TN
, et al;
Immunological Genome Project Consortium
.
Transcriptome analysis identifies regulators of hematopoietic stem and progenitor cells
.
Stem Cell Reports
.
2013
;
1
(
3
):
266
-
280
.
22.
Nestorowa
S
,
Hamey
FK
,
Pijuan Sala
B
, et al
.
A single-cell resolution map of mouse hematopoietic stem and progenitor cell differentiation
.
Blood
.
2016
;
128
(
8
):
e20
-
e31
.
23.
Olsson
A
,
Venkatasubramanian
M
,
Chaudhri
VK
, et al
.
Single-cell analysis of mixed-lineage states leading to a binary cell fate choice [published correction appears in Nature. 2019;569(7755):E3]
.
Nature
.
2016
;
537
(
7622
):
698
-
702
.
24.
Weinreb
C
,
Wolock
S
,
Klein
AM
.
SPRING: a kinetic interface for visualizing high dimensional single-cell expression data
.
Bioinformatics
.
2018
;
34
(
7
):
1246
-
1248
.
25.
Erlander
MG
,
Tillakaratne
NJ
,
Feldblum
S
,
Patel
N
,
Tobin
AJ
.
Two genes encode distinct glutamate decarboxylases
.
Neuron
.
1991
;
7
(
1
):
91
-
100
.
26.
Baryawno
N
,
Przybylski
D
,
Kowalczyk
MS
, et al
.
A cellular taxonomy of the bone marrow stroma in homeostasis and leukemia
.
Cell
.
2019
;
177
(
7
):
1915
-
1932.e16
.
27.
Choi
J
,
Baldwin
TM
,
Wong
M
, et al
.
Haemopedia RNA-seq: a database of gene expression during haematopoiesis in mice and humans
.
Nucleic Acids Res
.
2019
;
47
(
D1
):
D780
-
D785
.
28.
de Graaf
CA
,
Choi
J
,
Baldwin
TM
, et al
.
Haemopedia: an expression atlas of murine hematopoietic cells
.
Stem Cell Reports
.
2016
;
7
(
3
):
571
-
582
.
29.
Gessel
MM
,
Norris
JL
,
Caprioli
RM
.
MALDI imaging mass spectrometry: spatial molecular analysis to enable a new age of discovery
.
J Proteomics
.
2014
;
107
:
71
-
82
.
30.
Hardy
RR
,
Carmack
CE
,
Shinton
SA
,
Kemp
JD
,
Hayakawa
K
.
Resolution and characterization of pro-B and pre-pro-B cell stages in normal mouse bone marrow
.
J Exp Med
.
1991
;
173
(
5
):
1213
-
1225
.
31.
Petkau
G
,
Turner
M
.
Signalling circuits that direct early B-cell development
.
Biochem J
.
2019
;
476
(
5
):
769
-
778
.
32.
Chen
Y
,
Yao
C
,
Teng
Y
, et al
.
Phorbol ester induced ex vivo expansion of rigorously-defined phenotypic but not functional human cord blood hematopoietic stem cells: a cautionary tale demonstrating that phenotype does not always recapitulate stem cell function
.
Leukemia
.
2019
;
33
(
12
):
2962
-
2966
.
33.
Capitano
M
,
Zhao
L
,
Cooper
S
, et al
.
Phosphatidylinositol transfer proteins regulate megakaryocyte TGF-β1 secretion and hematopoiesis in mice
.
Blood
.
2018
;
132
(
10
):
1027
-
1038
.
34.
Capitano
ML
,
Mor-Vaknin
N
,
Saha
AK
, et al
.
Secreted nuclear protein DEK regulates hematopoiesis through CXCR2 signaling
.
J Clin Invest
.
2019
;
129
(
6
):
2555
-
2570
.
35.
Mantel
CR
,
O’Leary
HA
,
Chitteti
BR
, et al
.
Enhancing hematopoietic stem cell transplantation efficacy by mitigating oxygen shock
.
Cell
.
2015
;
161
(
7
):
1553
-
1565
.
36.
Broxmeyer
HE
,
Hoggatt
J
,
O’Leary
HA
, et al
.
Dipeptidylpeptidase 4 negatively regulates colony-stimulating factor activity and stress hematopoiesis
.
Nat Med
.
2012
;
18
(
12
):
1786
-
1796
.
37.
Gotoh
A
,
Takahira
H
,
Mantel
C
,
Litz-Jackson
S
,
Boswell
HS
,
Broxmeyer
HE
.
Steel factor induces serine phosphorylation of Stat3 in human growth factor-dependent myeloid cell lines
.
Blood
.
1996
;
88
(
1
):
138
-
145
.
38.
Subramanian
A
,
Tamayo
P
,
Mootha
VK
, et al
.
Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles
.
Proc Natl Acad Sci USA
.
2005
;
102
(
43
):
15545
-
15550
.
39.
Pietras
EM
,
Lakshminarasimhan
R
,
Techner
J-M
, et al
.
Re-entry into quiescence protects hematopoietic stem cells from the killing effect of chronic exposure to type I interferons
.
J Exp Med
.
2014
;
211
(
2
):
245
-
262
.
40.
Holmes
R
,
Zúñiga-Pflücker
JC
.
The OP9-DL1 system: generation of T-lymphocytes from embryonic or hematopoietic stem cells in vitro
.
Cold Spring Harb Protoc
.
2009
;
2009
(
2
):
pdb.prot5156
.
41.
Krämer
A
,
Green
J
,
Pollard
J
Jr.
,
Tugendreich
S
.
Causal analysis approaches in Ingenuity Pathway Analysis
.
Bioinformatics
.
2014
;
30
(
4
):
523
-
530
.
42.
Miyai
T
,
Takano
J
,
Endo
TA
, et al
.
Three-step transcriptional priming that drives the commitment of multipotent progenitors toward B cells
.
Genes Dev
.
2018
;
32
(
2
):
112
-
126
.
43.
Bowery
NG
,
Hill
DR
,
Hudson
AL
, et al
.
(-)Baclofen decreases neurotransmitter release in the mammalian CNS by an action at a novel GABA receptor
.
Nature
.
1980
;
283
(
5742
):
92
-
94
.
44.
Kerr
DI
,
Ong
J
,
Johnston
GA
,
Abbenante
J
,
Prager
RH
.
2-Hydroxy-saclofen: an improved antagonist at central and peripheral GABAB receptors
.
Neurosci Lett
.
1988
;
92
(
1
):
92
-
96
.
45.
Wardemann
H
,
Yurasov
S
,
Schaefer
A
,
Young
JW
,
Meffre
E
,
Nussenzweig
MC
.
Predominant autoantibody production by early human B cell precursors
.
Science
.
2003
;
301
(
5638
):
1374
-
1377
.
46.
Shim
J
,
Mukherjee
T
,
Mondal
BC
, et al
.
Olfactory control of blood progenitor maintenance
.
Cell
.
2013
;
155
(
5
):
1141
-
1153
.
47.
Vega-López
A
,
Pagadala
NS
,
López-Tapia
BP
, et al
.
Is related the hematopoietic stem cells differentiation in the Nile tilapia with GABA exposure?
Fish Shellfish Immunol
.
2019
;
93
:
801
-
814
.
48.
Astle
WJ
,
Elding
H
,
Jiang
T
, et al
.
The allelic landscape of human blood cell trait variation and links to common complex disease
.
Cell
.
2016
;
167
(
5
):
1415
-
1429.e19
.
49.
Ulirsch
JC
,
Lareau
CA
,
Bao
EL
, et al
.
Interrogation of human hematopoiesis at single-cell and single-variant resolution
.
Nat Genet
.
2019
;
51
(
4
):
683
-
693
.
You do not currently have access to this content.

Sign in via your Institution

Sign In