Key Points

  • RA-responsive mononuclear cells are increased in IL-23–rich human GI-GVHD tissue and are associated with poor outcome.

  • These cells have a GI-tropic IL-23R+ CD8 effector T-cell phenotype and are expanded by allostimulation in RA- and IL-23–rich conditions.

Abstract

Gastrointestinal (GI) graft-versus-host disease (GVHD) is a major barrier in allogeneic hematopoietic stem cell transplantation (allo-HSCT). The metabolite retinoic acid (RA) potentiates GI-GVHD in mice via alloreactive T cells expressing the RA receptor-α (RARα), but the role of RA-responsive cells in human GI-GVHD remains undefined. Therefore, we used conventional and novel sequential immunostaining and flow cytometry to scrutinize RA-responsive T cells in tissues and blood of patients who had received allo-HSCT and to characterize the impact of RA on human T-cell alloresponses. Expression of RARα by human mononuclear cells was increased after exposure to RA. RARαhi mononuclear cells were increased in GI-GVHD tissue, contained more cellular RA-binding proteins, localized with tissue damage, and correlated with GVHD severity and mortality. By using a targeted candidate protein approach, we predicted the phenotype of RA-responsive T cells in the context of increased microenvironmental interleukin-23 (IL-23). Sequential immunostaining confirmed the presence of a population of RARαhi CD8 T cells with the predicted phenotype that coexpressed the effector T-cell transcription factor T-bet and the IL-23–specific receptor (IL-23R). These cells were increased in GI- but not skin-GVHD tissues and were also selectively expanded in the blood of patients with GI-GVHD. Finally, functional approaches demonstrated that RA predominantly increased alloreactive GI-tropic RARαhi CD8 effector T cells, including cells with the phenotype identified in vivo. IL-23–rich conditions potentiated this effect by selectively increasing β7 integrin expression on CD8 effector T cells and reducing CD4 T cells with a regulatory cell phenotype. In summary, we have identified a population of RA-responsive effector T cells with a distinctive phenotype that is selectively expanded in human GI-GVHD and that represents a potential new therapeutic target.

REFERENCES

REFERENCES
1.
Anasetti
C
,
Logan
BR
,
Lee
SJ
, et al;
Blood and Marrow Transplant Clinical Trials Network
.
Peripheral-blood stem cells versus bone marrow from unrelated donors
.
N Engl J Med
.
2012
;
367
(
16
):
1487
-
1496
.
2.
Saber
W
,
Opie
S
,
Rizzo
JD
,
Zhang
MJ
,
Horowitz
MM
,
Schriber
J
.
Outcomes after matched unrelated donor versus identical sibling hematopoietic cell transplantation in adults with acute myelogenous leukemia
.
Blood
.
2012
;
119
(
17
):
3908
-
3916
.
3.
Wagner
JE
,
Thompson
JS
,
Carter
SL
,
Kernan
NA
;
Unrelated Donor Marrow Transplantation Trial
.
Effect of graft-versus-host disease prophylaxis on 3-year disease-free survival in recipients of unrelated donor bone marrow (T-cell Depletion Trial): a multi-centre, randomised phase II-III trial
.
Lancet
.
2005
;
366
(
9487
):
733
-
741
.
4.
Castilla-Llorente
C
,
Martin
PJ
,
McDonald
GB
, et al
.
Prognostic factors and outcomes of severe gastrointestinal GVHD after allogeneic hematopoietic cell transplantation
.
Bone Marrow Transplant
.
2014
;
49
(
7
):
966
-
971
.
5.
Iwata
M
,
Hirakiyama
A
,
Eshima
Y
,
Kagechika
H
,
Kato
C
,
Song
SY
.
Retinoic acid imprints gut-homing specificity on T cells
.
Immunity
.
2004
;
21
(
4
):
527
-
538
.
6.
Coombes
JL
,
Siddiqui
KR
,
Arancibia-Cárcamo
CV
, et al
.
A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-beta and retinoic acid-dependent mechanism
.
J Exp Med
.
2007
;
204
(
8
):
1757
-
1764
.
7.
Mucida
D
,
Park
Y
,
Kim
G
, et al
.
Reciprocal TH17 and regulatory T cell differentiation mediated by retinoic acid
.
Science
.
2007
;
317
(
5835
):
256
-
260
.
8.
Sun
CM
,
Hall
JA
,
Blank
RB
, et al
.
Small intestine lamina propria dendritic cells promote de novo generation of Foxp3 T reg cells via retinoic acid
.
J Exp Med
.
2007
;
204
(
8
):
1775
-
1785
.
9.
Brown
CC
,
Esterhazy
D
,
Sarde
A
, et al
.
Retinoic acid is essential for Th1 cell lineage stability and prevents transition to a Th17 cell program
.
Immunity
.
2015
;
42
(
3
):
499
-
511
.
10.
Hall
JA
,
Cannons
JL
,
Grainger
JR
, et al
.
Essential role for retinoic acid in the promotion of CD4(+) T cell effector responses via retinoic acid receptor alpha
.
Immunity
.
2011
;
34
(
3
):
435
-
447
.
11.
Allie
SR
,
Zhang
W
,
Tsai
CY
,
Noelle
RJ
,
Usherwood
EJ
.
Critical role for all-trans retinoic acid for optimal effector and effector memory CD8 T cell differentiation
.
J Immunol
.
2013
;
190
(
5
):
2178
-
2187
.
12.
Tan
X
,
Sande
JL
,
Pufnock
JS
,
Blattman
JN
,
Greenberg
PD
.
Retinoic acid as a vaccine adjuvant enhances CD8+ T cell response and mucosal protection from viral challenge
.
J Virol
.
2011
;
85
(
16
):
8316
-
8327
.
13.
Dodge
J
,
Stephans
A
,
Lai
J
,
Drobyski
WR
,
Chen
X
.
Effects of donor vitamin A deficiency and pharmacologic modulation of donor T cell retinoic acid pathway on the severity of experimental graft-versus-host disease
.
Biol Blood Marrow Transplant
.
2016
;
22
(
12
):
2141
-
2148
.
14.
Chen
X
,
Dodge
J
,
Komorowski
R
,
Drobyski
WR
.
A critical role for the retinoic acid signaling pathway in the pathophysiology of gastrointestinal graft-versus-host disease
.
Blood
.
2013
;
121
(
19
):
3970
-
3980
.
15.
Aoyama
K
,
Saha
A
,
Tolar
J
, et al
.
Inhibiting retinoic acid signaling ameliorates graft-versus-host disease by modifying T-cell differentiation and intestinal migration
.
Blood
.
2013
;
122
(
12
):
2125
-
2134
.
16.
DePaolo
RW
,
Abadie
V
,
Tang
F
, et al
.
Co-adjuvant effects of retinoic acid and IL-15 induce inflammatory immunity to dietary antigens
.
Nature
.
2011
;
471
(
7337
):
220
-
224
.
17.
Gajardo
T
,
Pérez
F
,
Terraza
C
,
Campos-Mora
M
,
Noelle
RJ
,
Pino-Lagos
K
.
IL-33 enhances retinoic acid signaling on CD4+ T cells
.
Cytokine
.
2016
;
85
:
120
-
122
.
18.
Kreft
A
,
Mottok
A
,
Mesteri
I
, et al;
Gastrointestinal Pathology Group of the German-Austrian-Swiss GvHD Consortium
.
Consensus diagnostic histopathological criteria for acute gastrointestinal graft versus host disease improve interobserver reproducibility
.
Virchows Arch
.
2015
;
467
(
3
):
255
-
263
.
19.
Przepiorka
D
,
Weisdorf
D
,
Martin
P
, et al
.
1994 consensus conference on acute GVHD grading
.
Bone Marrow Transplant
.
1995
;
15
(
6
):
825
-
828
.
20.
van den Brand
M
,
Hoevenaars
BM
,
Sigmans
JH
, et al
.
Sequential immunohistochemistry: a promising new tool for the pathology laboratory
.
Histopathology
.
2014
;
65
(
5
):
651
-
657
.
21.
Levine
JH
,
Simonds
EF
,
Bendall
SC
, et al
.
Data-driven phenotypic dissection of AML reveals progenitor-like cells that correlate with prognosis
.
Cell
.
2015
;
162
(
1
):
184
-
197
.
22.
Kotsiou
E
,
Okosun
J
,
Besley
C
, et al
.
TNFRSF14 aberrations in follicular lymphoma increase clinically significant allogeneic T-cell responses
.
Blood
.
2016
;
128
(
1
):
72
-
81
.
23.
Friedman
A
,
Halevy
O
,
Schrift
M
,
Arazi
Y
,
Sklan
D
.
Retinoic acid promotes proliferation and induces expression of retinoic acid receptor-alpha gene in murine T lymphocytes
.
Cell Immunol
.
1993
;
152
(
1
):
240
-
248
.
24.
Halevy
O
,
Arazi
Y
,
Melamed
D
,
Friedman
A
,
Sklan
D
.
Retinoic acid receptor-alpha gene expression is modulated by dietary vitamin A and by retinoic acid in chicken T lymphocytes
.
J Nutr
.
1994
;
124
(
11
):
2139
-
2146
.
25.
Donato
LJ
,
Noy
N
.
Fluorescence-based technique for analyzing retinoic acid
.
Methods Mol Biol
.
2010
;
652
:
177
-
187
.
26.
Dong
D
,
Ruuska
SE
,
Levinthal
DJ
,
Noy
N
.
Distinct roles for cellular retinoic acid-binding proteins I and II in regulating signaling by retinoic acid
.
J Biol Chem
.
1999
;
274
(
34
):
23695
-
23698
.
27.
Budhu
AS
,
Noy
N
.
Direct channeling of retinoic acid between cellular retinoic acid-binding protein II and retinoic acid receptor sensitizes mammary carcinoma cells to retinoic acid-induced growth arrest
.
Mol Cell Biol
.
2002
;
22
(
8
):
2632
-
2641
.
28.
Fu
J
,
Wang
D
,
Yu
Y
, et al
.
T-bet is critical for the development of acute graft-versus-host disease through controlling T cell differentiation and function
.
J Immunol
.
2015
;
194
(
1
):
388
-
397
.
29.
Haines
CJ
,
Chen
Y
,
Blumenschein
WM
, et al
.
Autoimmune memory T helper 17 cell function and expansion are dependent on interleukin-23
.
Cell Rep
.
2013
;
3
(
5
):
1378
-
1388
.
30.
Arango Duque
G
,
Descoteaux
A
.
Macrophage cytokines: involvement in immunity and infectious diseases
.
Front Immunol
.
2014
;
5
:
491
.
31.
Nikiforow
S
,
Wang
T
,
Hemmer
M
, et al;
GV12-02 Writing Committee on behalf of the CIBMTR® Graft-versus-Host Disease Working Committee
.
Upper gastrointestinal acute graft-versus-host disease adds minimal prognostic value in isolation or with other graft- versus-host disease symptoms as currently diagnosed and treated
.
Haematologica
.
2018
;
103
(
10
):
1708
-
1719
.
32.
Joshi
NM
,
Hassan
S
,
Jasani
P
, et al
.
Bile acid malabsorption in patients with graft-versus-host disease of the gastrointestinal tract
.
Br J Haematol
.
2012
;
157
(
3
):
403
-
407
.
33.
Koenecke
C
,
Prinz
I
,
Bubke
A
, et al
.
Shift of graft-versus-host-disease target organ tropism by dietary vitamin A
.
PLoS One
.
2012
;
7
(
5
):
e38252
.
34.
Martin
JC
,
Bériou
G
,
Heslan
M
, et al
.
IL-22BP is produced by eosinophils in human gut and blocks IL-22 protective actions during colitis
.
Mucosal Immunol
.
2016
;
9
(
2
):
539
-
549
.
35.
Lounder
DT
,
Khandelwal
P
,
Dandoy
CE
, et al
.
Lower levels of vitamin A are associated with increased gastrointestinal graft-versus-host disease in children
.
Blood
.
2017
;
129
(
20
):
2801
-
2807
.
36.
Rieger
K
,
Loddenkemper
C
,
Maul
J
, et al
.
Mucosal FOXP3+ regulatory T cells are numerically deficient in acute and chronic GvHD
.
Blood
.
2006
;
107
(
4
):
1717
-
1723
.
37.
Roy
J
,
Platt
JL
,
Weisdorf
DJ
.
The immunopathology of upper gastrointestinal acute graft-versus-host disease. Lymphoid cells and endothelial adhesion molecules
.
Transplantation
.
1993
;
55
(
3
):
572
-
578
.
38.
Betts
BC
,
Sagatys
EM
,
Veerapathran
A
, et al
.
CD4+ T cell STAT3 phosphorylation precedes acute GVHD, and subsequent Th17 tissue invasion correlates with GVHD severity and therapeutic response
.
J Leukoc Biol
.
2015
;
97
(
4
):
807
-
819
.
39.
Furlan
SN
,
Watkins
B
,
Tkachev
V
, et al
.
Systems analysis uncovers inflammatory Th/Tc17-driven modules during acute GVHD in monkey and human T cells
.
Blood
.
2016
;
128
(
21
):
2568
-
2579
.
40.
Zhou
V
,
Agle
K
,
Chen
X
, et al
.
A colitogenic memory CD4+ T cell population mediates gastrointestinal graft-versus-host disease
.
J Clin Invest
.
2016
;
126
(
9
):
3541
-
3555
.
41.
Das
R
,
Chen
X
,
Komorowski
R
,
Hessner
MJ
,
Drobyski
WR
.
Interleukin-23 secretion by donor antigen-presenting cells is critical for organ-specific pathology in graft-versus-host disease
.
Blood
.
2009
;
113
(
10
):
2352
-
2362
.
42.
Shono
Y
,
Docampo
MD
,
Peled
JU
, et al
.
Increased GVHD-related mortality with broad-spectrum antibiotic use after allogeneic hematopoietic stem cell transplantation in human patients and mice
.
Sci Transl Med
.
2016
;
8
(
339
):
339ra71
.
43.
Hill
GR
,
Crawford
JM
,
Cooke
KR
,
Brinson
YS
,
Pan
L
,
Ferrara
JL
.
Total body irradiation and acute graft-versus-host disease: the role of gastrointestinal damage and inflammatory cytokines
.
Blood
.
1997
;
90
(
8
):
3204
-
3213
.
44.
Huang
W
,
Yu
J
,
Jones
JW
, et al
.
Proteomic evaluation of the acute radiation syndrome of the gastrointestinal tract in a murine total-body irradiation model
.
Health Phys
.
2019
;
116
(
4
):
516
-
528
.
You do not currently have access to this content.

Sign in via your Institution

Sign In