Key Points

  • EVs derived from stored platelets cause TRALI as a function of their elevated ceramide and decreased S1P content.

  • Inhibiting ceramide formation, supplementing S1P, or washing stored platelets could potentially reduce TRALI incidence and severity.

Abstract

Transfusion-related acute lung injury (TRALI) is a hazardous transfusion complication with an associated mortality of 5% to 15%. We previously showed that stored (5 days) but not fresh platelets (1 day) cause TRALI via ceramide-mediated endothelial barrier dysfunction. As biological ceramides are hydrophobic, extracellular vesicles (EVs) may be required to shuttle these sphingolipids from platelets to endothelial cells. Adding to complexity, EV formation in turn requires ceramide. We hypothesized that ceramide-dependent EV formation from stored platelets and EV-dependent sphingolipid shuttling induces TRALI. EVs formed during storage of murine platelets were enumerated, characterized for sphingolipids, and applied in a murine TRALI model in vivo and for endothelial barrier assessment in vitro. Five-day EVs were more abundant, had higher long-chain ceramide (C16:0, C18:0, C20:0), and lower sphingosine-1-phosphate (S1P) content than 1-day EVs. Transfusion of 5-day, but not 1-day, EVs induced characteristic signs of lung injury in vivo and endothelial barrier disruption in vitro. Inhibition or supplementation of ceramide-forming sphingomyelinase reduced or enhanced the formation of EVs, respectively, but did not alter the injuriousness per individual EV. Barrier failure was attenuated when EVs were abundant in or supplemented with S1P. Stored human platelet 4-day EVs were more numerous compared with 2-day EVs, contained more long-chain ceramide and less S1P, and caused more endothelial cell barrier leak. Hence, platelet-derived EVs become more numerous and more injurious (more long-chain ceramide, less S1P) during storage. Blockade of sphingomyelinase, EV elimination, or supplementation of S1P during platelet storage may present promising strategies for TRALI prevention.

REFERENCES

1.
Kopko
PM
,
Marshall
CS
,
MacKenzie
MR
,
Holland
PV
,
Popovsky
MA
.
Transfusion-related acute lung injury: report of a clinical look-back investigation
.
JAMA
.
2002
;
287
(
15
):
1968
-
1971
.
2.
Looney
MR
,
Gropper
MA
,
Matthay
MA
.
Transfusion-related acute lung injury: a review
.
Chest
.
2004
;
126
(
1
):
249
-
258
.
3.
Bux
J
.
Transfusion-related acute lung injury (TRALI): a serious adverse event of blood transfusion
.
Vox Sang
.
2005
;
89
(
1
):
1
-
10
.
4.
Vlaar
AP
,
Binnekade
JM
,
Prins
D
, et al
.
Risk factors and outcome of transfusion-related acute lung injury in the critically ill: a nested case-control study
.
Crit Care Med
.
2010
;
38
(
3
):
771
-
778
.
5.
Mazer
CD
,
Whitlock
RP
,
Fergusson
DA
, et al;
TRICS Investigators and Perioperative Anesthesia Clinical Trials Group
.
Restrictive or liberal red-cell transfusion for cardiac surgery
.
N Engl J Med
.
2017
;
377
(
22
):
2133
-
2144
.
6.
Morsing
KSH
,
Peters
AL
,
van Buul
JD
,
Vlaar
APJ
.
The role of endothelium in the onset of antibody-mediated TRALI
.
Blood Rev
.
2018
;
32
(
1
):
1
-
7
.
7.
Popovsky
MA
.
Transfusion-related acute lung injury: three decades of progress but miles to go before we sleep
.
Transfusion
.
2015
;
55
(
5
):
930
-
934
.
8.
Kumar
R
,
Sedky
MJ
,
Varghese
SJ
,
Sharawy
OE
.
Transfusion related acute lung injury (TRALI): a single institution experience of 15 years
.
Indian J Hematol Blood Transfus
.
2016
;
32
(
3
):
320
-
327
.
9.
Andreu
G
,
Boudjedir
K
,
Muller
JY
, et al
.
Analysis of transfusion-related acute lung injury and possible transfusion-related acute lung injury reported to the French Hemovigilance Network from 2007 to 2013
.
Transfus Med Rev
.
2018
;
32
(
1
):
16
-
27
.
10.
Toy
P
,
Gajic
O
,
Bacchetti
P
, et al;
TRALI Study Group
.
Transfusion-related acute lung injury: incidence and risk factors
.
Blood
.
2012
;
119
(
7
):
1757
-
1767
.
11.
Peters
AL
,
Van Stein
D
,
Vlaar
AP
.
Antibody-mediated transfusion-related acute lung injury; from discovery to prevention
.
Br J Haematol
.
2015
;
170
(
5
):
597
-
614
.
12.
Peters
AL
,
van Hezel
ME
,
Juffermans
NP
,
Vlaar
AP
.
Pathogenesis of non-antibody mediated transfusion-related acute lung injury from bench to bedside
.
Blood Rev
.
2015
;
29
(
1
):
51
-
61
.
13.
Semple
JW
,
Rebetz
J
,
Kapur
R
.
Transfusion-associated circulatory overload and transfusion-related acute lung injury
.
Blood
.
2019
;
133
(
17
):
1840
-
1853
.
14.
Otrock
ZK
,
Liu
C
,
Grossman
BJ
.
Transfusion-related acute lung injury risk mitigation: an update
.
Vox Sang
.
2017
;
112
(
8
):
694
-
703
.
15.
McVey
MJ
,
Kim
M
,
Tabuchi
A
, et al
.
Acid sphingomyelinase mediates murine acute lung injury following transfusion of aged platelets
.
Am J Physiol Lung Cell Mol Physiol
.
2017
;
312
(
5
):
L625
-
L637
.
16.
Pienimaeki-Roemer
A
,
Ruebsaamen
K
,
Boettcher
A
, et al
.
Stored platelets alter glycerophospholipid and sphingolipid species, which are differentially transferred to newly released extracellular vesicles
.
Transfusion
.
2013
;
53
(
3
):
612
-
626
.
17.
Ruebsaamen
K
,
Liebisch
G
,
Boettcher
A
,
Schmitz
G
.
Lipidomic analysis of platelet senescence
.
Transfusion
.
2010
;
50
(
8
):
1665
-
1676
.
18.
Yang
Y
,
Yin
J
,
Baumgartner
W
, et al
.
Platelet-activating factor reduces endothelial nitric oxide production: role of acid sphingomyelinase
.
Eur Respir J
.
2010
;
36
(
2
):
417
-
427
.
19.
Samapati
R
,
Yang
Y
,
Yin
J
, et al
.
Lung endothelial Ca2+ and permeability response to platelet-activating factor is mediated by acid sphingomyelinase and transient receptor potential classical 6
.
Am J Respir Crit Care Med
.
2012
;
185
(
2
):
160
-
170
.
20.
Cuvillier
O
,
Pirianov
G
,
Kleuser
B
, et al
.
Suppression of ceramide-mediated programmed cell death by sphingosine-1-phosphate
.
Nature
.
1996
;
381
(
6585
):
800
-
803
.
21.
Van Brocklyn
JR
,
Williams
JB
.
The control of the balance between ceramide and sphingosine-1-phosphate by sphingosine kinase: oxidative stress and the seesaw of cell survival and death
.
Comp Biochem Physiol B Biochem Mol Biol
.
2012
;
163
(
1
):
26
-
36
.
22.
McVey
M
,
Tabuchi
A
,
Kuebler
WM
.
Microparticles and acute lung injury
.
Am J Physiol Lung Cell Mol Physiol
.
2012
;
303
(
5
):
L364
-
L381
.
23.
Horinouchi
K
,
Erlich
S
,
Perl
DP
, et al
.
Acid sphingomyelinase deficient mice: a model of types A and B Niemann-Pick disease
.
Nat Genet
.
1995
;
10
(
3
):
288
-
293
.
24.
Roth
AG
,
Drescher
D
,
Yang
Y
,
Redmer
S
,
Uhlig
S
,
Arenz
C
.
Potent and selective inhibition of acid sphingomyelinase by bisphosphonates
.
Angew Chem Int Ed Engl
.
2009
;
48
(
41
):
7560
-
7563
.
25.
McVey
MJ
,
Spring
CM
,
Semple
JW
,
Maishan
M
,
Kuebler
WM
.
Microparticles as biomarkers of lung disease: enumeration in biological fluids using lipid bilayer microspheres
.
Am J Physiol Lung Cell Mol Physiol
.
2016
;
310
(
9
):
L802
-
L814
.
26.
McVey
MJ
,
Spring
CM
,
Kuebler
WM
.
Improved resolution in extracellular vesicle populations using 405 instead of 488 nm side scatter
.
J Extracell Vesicles
.
2018
;
7
(
1
):
1454776
.
27.
Carpinteiro
A
,
Becker
KA
,
Japtok
L
, et al
.
Regulation of hematogenous tumor metastasis by acid sphingomyelinase
.
EMBO Mol Med
.
2015
;
7
(
6
):
714
-
734
.
28.
Huston
JP
,
Kornhuber
J
,
Mühle
C
, et al
.
A sphingolipid mechanism for behavioral extinction
.
J Neurochem
.
2016
;
137
(
4
):
589
-
603
.
29.
McVey
MJ
,
Kapur
R
,
Cserti-Gazdewich
C
,
Semple
JW
,
Karkouti
K
,
Kuebler
WM
.
Transfusion-related Acute Lung Injury in the Perioperative Patient
.
Anesthesiology
.
2019
;
131
(
3
):
693
-
715
.
30.
Hoehn
RS
,
Jernigan
PL
,
Japtok
L
, et al
.
Acid Sphingomyelinase Inhibition in Stored Erythrocytes Reduces Transfusion-Associated Lung Inflammation
.
Ann Surg
.
2017
;
265
(
1
):
218
-
226
.
31.
Simon
CG
Jr.
,
Chatterjee
S
,
Gear
AR
.
Sphingomyelinase activity in human platelets
.
Thromb Res
.
1998
;
90
(
4
):
155
-
161
.
32.
Göggel
R
,
Winoto-Morbach
S
,
Vielhaber
G
, et al
.
PAF-mediated pulmonary edema: a new role for acid sphingomyelinase and ceramide
.
Nat Med
.
2004
;
10
(
2
):
155
-
160
.
33.
Uhlig
S
,
Yang
Y
.
Sphingolipids in acute lung injury
.
Handb Exp Pharmacol
.
2013
;
216
:
227
-
246
.
34.
Middelburg
RA
,
Borkent-Raven
BA
,
Janssen
MP
, et al
.
Storage time of blood products and transfusion-related acute lung injury [published correction appears in Transfusion. 2012;52(6):1386]
.
Transfusion
.
2012
;
52
(
3
):
658
-
667
.
35.
Tariket
S
,
Sut
C
,
Hamzeh-Cognasse
H
, et al
.
Transfusion-related acute lung injury: transfusion, platelets and biological response modifiers
.
Expert Rev Hematol
.
2016
;
9
(
5
):
497
-
508
.
36.
McVey
MJ
,
Maishan
M
,
Blokland
KEC
,
Bartlett
N
,
Kuebler
WM
.
Extracellular vesicles in lung health, disease, and therapy
.
Am J Physiol Lung Cell Mol Physiol
.
2019
;
316
(
6
):
L977
-
L989
.
37.
Menocha
S
,
Muszynski
JA
.
Transfusion-related immune modulation: functional consequence of extracellular vesicles?
Transfusion
.
2019
;
59
(
12
):
3553
-
3555
.
38.
Almizraq
RJ
,
Seghatchian
J
,
Acker
JP
.
Extracellular vesicles in transfusion-related immunomodulation and the role of blood component manufacturing
.
Transfus Apheresis Sci
.
2016
;
55
(
3
):
281
-
291
.
39.
Obeid
S
,
Sung
PS
,
Le Roy
B
, et al
.
NanoBioAnalytical characterization of extracellular vesicles in 75-nm nanofiltered human plasma for transfusion: a tool to improve transfusion safety
.
Nanomedicine (Lond)
.
2019
;
20
:
101977
.
40.
Saas
P
,
Angelot
F
,
Bardiaux
L
,
Seilles
E
,
Garnache-Ottou
F
,
Perruche
S
.
Phosphatidylserine-expressing cell by-products in transfusion: A pro-inflammatory or an anti-inflammatory effect?
Transfus Clin Biol
.
2012
;
19
(
3
):
90
-
97
.
41.
Jy
W
,
Ricci
M
,
Shariatmadar
S
,
Gomez-Marin
O
,
Horstman
LH
,
Ahn
YS
.
Microparticles in stored red blood cells as potential mediators of transfusion complications
.
Transfusion
.
2011
;
51
(
4
):
886
-
893
.
42.
Xie
RF
,
Hu
P
,
Wang
ZC
, et al
.
Platelet-derived microparticles induce polymorphonuclear leukocyte-mediated damage of human pulmonary microvascular endothelial cells
.
Transfusion
.
2015
;
55
(
5
):
1051
-
1057
.
43.
Xie
RF
,
Hu
P
,
Li
W
, et al
.
The effect of platelet-derived microparticles in stored apheresis platelet concentrates on polymorphonuclear leucocyte respiratory burst
.
Vox Sang
.
2014
;
106
(
3
):
234
-
241
.
44.
Zhang
AY
,
Yi
F
,
Jin
S
, et al
.
Acid sphingomyelinase and its redox amplification in formation of lipid raft redox signaling platforms in endothelial cells
.
Antioxid Redox Signal
.
2007
;
9
(
7
):
817
-
828
.
45.
Trajkovic
K
,
Hsu
C
,
Chiantia
S
, et al
.
Ceramide triggers budding of exosome vesicles into multivesicular endosomes
.
Science
.
2008
;
319
(
5867
):
1244
-
1247
.
46.
Fukushima
M
,
Dasgupta
D
,
Mauer
AS
,
Kakazu
E
,
Nakao
K
,
Malhi
H
.
StAR-related lipid transfer domain 11 (STARD1)-mediated ceramide transport mediates extracellular vesicle biogenesis
.
J Biol Chem
.
2018
;
293
(
39
):
15277
-
15289
.
47.
Davizon
P
,
Munday
AD
,
López
JA
.
Tissue factor, lipid rafts, and microparticles
.
Semin Thromb Hemost
.
2010
;
36
(
8
):
857
-
864
.
48.
Bianco
F
,
Perrotta
C
,
Novellino
L
, et al
.
Acid sphingomyelinase activity triggers microparticle release from glial cells
.
EMBO J
.
2009
;
28
(
8
):
1043
-
1054
.
49.
Verderio
C
,
Gabrielli
M
,
Giussani
P
.
Role of sphingolipids in the biogenesis and biological activity of extracellular vesicles
.
J Lipid Res
.
2018
;
59
(
8
):
1325
-
1340
.
50.
Elsherbini
A
,
Bieberich
E
.
Ceramide and exosomes: a novel target in cancer biology and therapy
.
Adv Cancer Res
.
2018
;
140
:
121
-
154
.
51.
Kuebler
WM
,
Yang
Y
,
Samapati
R
,
Uhlig
S
.
Vascular barrier regulation by PAF, ceramide, caveolae, and NO - an intricate signaling network with discrepant effects in the pulmonary and systemic vasculature
.
Cell Physiol Biochem
.
2010
;
26
(
1
):
29
-
40
.
52.
Clogston
JD
,
Patri
AK
.
Lipid component quantitation by thin layer chromatography
.
Methods Mol Biol
.
2011
;
697
:
109
-
117
.
53.
Uhlig
S
,
Gulbins
E
.
Sphingolipids in the lungs
.
Am J Respir Crit Care Med
.
2008
;
178
(
11
):
1100
-
1114
.
54.
Mizumura
K
,
Justice
MJ
,
Schweitzer
KS
, et al
.
Sphingolipid regulation of lung epithelial cell mitophagy and necroptosis during cigarette smoke exposure
.
FASEB J
.
2018
;
32
(
4
):
1880
-
1890
.
55.
Stiban
J
,
Perera
M
.
Very long chain ceramides interfere with C16-ceramide-induced channel formation: A plausible mechanism for regulating the initiation of intrinsic apoptosis
.
Biochim Biophys Acta
.
2015
;
1848
(
2
):
561
-
567
.
56.
Ali
M
,
Saroha
A
,
Pewzner-Jung
Y
,
Futerman
AH
.
LPS-mediated septic shock is augmented in ceramide synthase 2 null mice due to elevated activity of TNFα-converting enzyme
.
FEBS Lett
.
2015
;
589
(
17
):
2213
-
2217
.
57.
Marleau
AM
,
Chen
CS
,
Joyce
JA
,
Tullis
RH
.
Exosome removal as a therapeutic adjuvant in cancer
.
J Transl Med
.
2012
;
10
:
134
.
58.
Cohn
EJ
.
The separation of blood into fractions of therapeutic value
.
Ann Intern Med
.
1947
;
26
(
3
):
341
-
352
.
59.
Pienimaeki-Roemer
A
,
Fischer
A
,
Tafelmeier
M
, et al
.
High-density lipoprotein 3 and apolipoprotein A-I alleviate platelet storage lesion and release of platelet extracellular vesicles
.
Transfusion
.
2014
;
54
(
9
):
2301
-
2314
.
You do not currently have access to this content.

Sign in via your Institution

Sign In