Key Points

  • CC-90009 selectively degrades GSPT1, resulting in acute AML apoptosis and elimination of disease-driving LSCs.

  • The anti-AML activity of CC-90009 is regulated by the ILF2/ILF3 complex, the mTOR pathway, and the integrated stress response pathway.

Abstract

A number of clinically validated drugs have been developed by repurposing the CUL4-DDB1-CRBN-RBX1 (CRL4CRBN) E3 ubiquitin ligase complex with molecular glue degraders to eliminate disease-driving proteins. Here, we present the identification of a first-in-class GSPT1-selective cereblon E3 ligase modulator, CC-90009. Biochemical, structural, and molecular characterization demonstrates that CC-90009 coopts the CRL4CRBN to selectively target GSPT1 for ubiquitination and proteasomal degradation. Depletion of GSPT1 by CC-90009 rapidly induces acute myeloid leukemia (AML) apoptosis, reducing leukemia engraftment and leukemia stem cells (LSCs) in large-scale primary patient xenografting of 35 independent AML samples, including those with adverse risk features. Using a genome-wide CRISPR-Cas9 screen for effectors of CC-90009 response, we uncovered the ILF2 and ILF3 heterodimeric complex as a novel regulator of cereblon expression. Knockout of ILF2/ILF3 decreases the production of full-length cereblon protein via modulating CRBN messenger RNA alternative splicing, leading to diminished response to CC-90009. The screen also revealed that the mTOR signaling and the integrated stress response specifically regulate the response to CC-90009 in contrast to other cereblon modulators. Hyperactivation of the mTOR pathway by inactivation of TSC1 and TSC2 protected against the growth inhibitory effect of CC-90009 by reducing CC-90009-induced binding of GSPT1 to cereblon and subsequent GSPT1 degradation. On the other hand, GSPT1 degradation promoted the activation of the GCN1/GCN2/ATF4 pathway and subsequent apoptosis in AML cells. Collectively, CC-90009 activity is mediated by multiple layers of signaling networks and pathways within AML blasts and LSCs, whose elucidation gives insight into further assessment of CC-90009s clinical utility. These trials were registered at www.clinicaltrials.gov as #NCT02848001 and #NCT04336982).

REFERENCES

1.
Schapira
M
,
Calabrese
MF
,
Bullock
AN
,
Crews
CM
.
Targeted protein degradation: expanding the toolbox
.
Nat Rev Drug Discov
.
2019
;
18
(
12
):
949
-
963
.
2.
Chamberlain
PP
,
Hamann
LG
.
Development of targeted protein degradation therapeutics
.
Nat Chem Biol
.
2019
;
15
(
10
):
937
-
944
.
3.
Verma
R
,
Mohl
D
,
Deshaies
RJ
.
Harnessing the power of proteolysis for targeted protein inactivation
.
Mol Cell
.
2020
;
77
(
3
):
446
-
460
.
4.
Hansen
JD
,
Correa
M
,
Nagy
MA
, et al
.
Discovery of CRBN E3 ligase modulator CC-92480 for the treatment of relapsed and refractory multiple myeloma
.
J Med Chem
.
2020
;
63
(
13
):
6648
-
6676
.
5.
Matyskiela
ME
,
Lu
G
,
Ito
T
, et al
.
A novel cereblon modulator recruits GSPT1 to the CRL4(CRBN) ubiquitin ligase
.
Nature
.
2016
;
535
(
7611
):
252
-
257
.
6.
Matyskiela
ME
,
Zhang
W
,
Man
HW
, et al
.
A cereblon modulator (CC-220) with improved degradation of Ikaros and Aiolos
.
J Med Chem
.
2018
;
61
(
2
):
535
-
542
.
7.
Hagner
PR
,
Man
HW
,
Fontanillo
C
, et al
.
CC-122, a pleiotropic pathway modifier, mimics an interferon response and has antitumor activity in DLBCL
.
Blood
.
2015
;
126
(
6
):
779
-
789
.
8.
Hideshima
T
,
Chauhan
D
,
Shima
Y
, et al
.
Thalidomide and its analogs overcome drug resistance of human multiple myeloma cells to conventional therapy
.
Blood
.
2000
;
96
(
9
):
2943
-
2950
.
9.
Bartlett
JB
,
Dredge
K
,
Dalgleish
AG
.
The evolution of thalidomide and its IMiD derivatives as anticancer agents
.
Nat Rev Cancer
.
2004
;
4
(
4
):
314
-
322
.
10.
Mullard
A
.
First targeted protein degrader hits the clinic [published online ahead of print 6 March 2019]
.
Nat Rev Drug Discov
.
11.
Nakayama
Y
,
Kosek
J
,
Capone
L
,
Hur
EM
,
Schafer
PH
,
Ringheim
GE
.
Aiolos overexpression in systemic lupus erythematosus B cell subtypes and BAFF-induced memory B cell differentiation are reduced by CC-220 modulation of cereblon activity
.
J Immunol
.
2017
;
199
(
7
):
2388
-
2407
.
12.
Chamberlain
PP
,
Lopez-Girona
A
,
Miller
K
, et al
.
Structure of the human cereblon-DDB1-lenalidomide complex reveals basis for responsiveness to thalidomide analogs
.
Nat Struct Mol Biol
.
2014
;
21
(
9
):
803
-
809
.
13.
Fischer
ES
,
Böhm
K
,
Lydeard
JR
, et al
.
Structure of the DDB1-CRBN E3 ubiquitin ligase in complex with thalidomide
.
Nature
.
2014
;
512
(
7512
):
49
-
53
.
14.
Krönke
J
,
Fink
EC
,
Hollenbach
PW
, et al
.
Lenalidomide induces ubiquitination and degradation of CK1α in del(5q) MDS
.
Nature
.
2015
;
523
(
7559
):
183
-
188
.
15.
Krönke
J
,
Udeshi
ND
,
Narla
A
, et al
.
Lenalidomide causes selective degradation of IKZF1 and IKZF3 in multiple myeloma cells
.
Science
.
2014
;
343
(
6168
):
301
-
305
.
16.
Lu
G
,
Middleton
RE
,
Sun
H
, et al
.
The myeloma drug lenalidomide promotes the cereblon-dependent destruction of Ikaros proteins
.
Science
.
2014
;
343
(
6168
):
305
-
309
.
17.
Gandhi
AK
,
Kang
J
,
Havens
CG
, et al
.
Immunomodulatory agents lenalidomide and pomalidomide co-stimulate T cells by inducing degradation of T cell repressors Ikaros and Aiolos via modulation of the E3 ubiquitin ligase complex CRL4(CRBN.)
.
Br J Haematol
.
2014
;
164
(
6
):
811
-
821
.
18.
An
J
,
Ponthier
CM
,
Sack
R
, et al
.
pSILAC mass spectrometry reveals ZFP91 as IMiD-dependent substrate of the CRL4CRBN ubiquitin ligase
.
Nat Commun
.
2017
;
8
(
1
):
15398
.
19.
Belair
DG
,
Lu
G
,
Waller
LE
,
Gustin
JA
,
Collins
ND
,
Kolaja
KL
.
Thalidomide inhibits human iPSC mesendoderm differentiation by modulating CRBN-dependent degradation of SALL4
.
Sci Rep
.
2020
;
10
(
1
):
2864
.
20.
Matyskiela
ME
,
Couto
S
,
Zheng
X
, et al
.
SALL4 mediates teratogenicity as a thalidomide-dependent cereblon substrate
.
Nat Chem Biol
.
2018
;
14
(
10
):
981
-
987
.
21.
Donovan
KA
,
An
J
,
Nowak
RP
, et al
.
Thalidomide promotes degradation of SALL4, a transcription factor implicated in Duane Radial Ray syndrome
.
eLife
.
2018
;
7
:
e38430
.
22.
Sievers
QL
,
Petzold
G
,
Bunker
RD
, et al
.
Defining the human C2H2 zinc finger degrome targeted by thalidomide analogs through CRBN
.
Science
.
2018
;
362
(
6414
):
eaat0572
.
23.
Daver
N
,
Schlenk
RF
,
Russell
NH
,
Levis
MJ
.
Targeting FLT3 mutations in AML: review of current knowledge and evidence
.
Leukemia
.
2019
;
33
(
2
):
299
-
312
.
24.
DiNardo
CD
,
Stein
EM
,
de Botton
S
, et al
.
Durable remissions with ivosidenib in IDH1-mutated relapsed or refractory AML
.
N Engl J Med
.
2018
;
378
(
25
):
2386
-
2398
.
25.
Kats
LM
,
Vervoort
SJ
,
Cole
R
, et al
.
A pharmacogenomic approach validates AG-221 as an effective and on-target therapy in IDH2 mutant AML
.
Leukemia
.
2017
;
31
(
6
):
1466
-
1470
.
26.
Salas-Marco
J
,
Bedwell
DM
.
GTP hydrolysis by eRF3 facilitates stop codon decoding during eukaryotic translation termination
.
Mol Cell Biol
.
2004
;
24
(
17
):
7769
-
7778
.
27.
Bidou
L
,
Rousset
JP
,
Namy
O
.
Translational errors: from yeast to new therapeutic targets
.
FEMS Yeast Res
.
2010
;
10
(
8
):
1070
-
1082
.
28.
Kurosaki
T
,
Maquat
LE
.
Nonsense-mediated mRNA decay in humans at a glance
.
J Cell Sci
.
2016
;
129
(
3
):
461
-
467
.
29.
Martínez-Cuadrón
D
,
Gil
C
,
Serrano
J
, et al;
Spanish PETHEMA group
.
A precision medicine test predicts clinical response after idarubicin and cytarabine induction therapy in AML patients
.
Leuk Res
.
2019
;
76
:
1
-
10
.
30.
Ito
T
,
Ando
H
,
Suzuki
T
, et al
.
Identification of a primary target of thalidomide teratogenicity
.
Science
.
2010
;
327
(
5971
):
1345
-
1350
.
31.
Lu
G
,
Weng
S
,
Matyskiela
M
, et al
.
UBE2G1 governs the destruction of cereblon neomorphic substrates
.
eLife
.
2018
;
7
:
e40958
.
32.
Sievers
QL
,
Gasser
JA
,
Cowley
GS
,
Fischer
ES
,
Ebert
BL
.
Genome-wide screen identifies cullin-RING ligase machinery required for lenalidomide-dependent CRL4CRBN activity
.
Blood
.
2018
;
132
(
12
):
1293
-
1303
.
33.
Patil
A
,
Manzano
M
,
Gottwein
E
.
Genome-wide CRISPR screens reveal genetic mediators of cereblon modulator toxicity in primary effusion lymphoma
.
Blood Adv
.
2019
;
3
(
14
):
2105
-
2117
.
34.
Mayor-Ruiz
C
,
Jaeger
MG
,
Bauer
S
, et al
.
Plasticity of the Cullin-RING ligase repertoire shapes sensitivity to ligand-induced protein degradation
.
Mol Cell
.
2019
;
75
(
4
):
849
-
858
.
35.
Pierce
NW
,
Lee
JE
,
Liu
X
, et al
.
Cand1 promotes assembly of new SCF complexes through dynamic exchange of F box proteins
.
Cell
.
2013
;
153
(
1
):
206
-
215
.
36.
Reichman
TW
,
Muñiz
LC
,
Mathews
MB
.
The RNA binding protein nuclear factor 90 functions as both a positive and negative regulator of gene expression in mammalian cells
.
Mol Cell Biol
.
2002
;
22
(
1
):
343
-
356
.
37.
Marchesini
M
,
Ogoti
Y
,
Fiorini
E
, et al
.
ILF2 is a regulator of RNA splicing and DNA damage response in 1q21-amplified multiple myeloma
.
Cancer Cell
.
2017
;
32
(
1
):
88
-
100
.
38.
Pfeifer
I
,
Elsby
R
,
Fernandez
M
, et al
.
NFAR-1 and -2 modulate translation and are required for efficient host defense
.
Proc Natl Acad Sci USA
.
2008
;
105
(
11
):
4173
-
4178
.
39.
Sakamoto
S
,
Aoki
K
,
Higuchi
T
, et al
.
The NF90-NF45 complex functions as a negative regulator in the microRNA processing pathway
.
Mol Cell Biol
.
2009
;
29
(
13
):
3754
-
3769
.
40.
Masuda
K
,
Kuwano
Y
,
Nishida
K
,
Rokutan
K
,
Imoto
I
.
NF90 in posttranscriptional gene regulation and microRNA biogenesis
.
Int J Mol Sci
.
2013
;
14
(
8
):
17111
-
17121
.
41.
Liu
GY
,
Sabatini
DM
.
mTOR at the nexus of nutrition, growth, ageing and disease
.
Nat Rev Mol Cell Biol
.
2020
;
21
(
4
):
183
-
203
.
42.
Baird
TD
,
Wek
RC
.
Eukaryotic initiation factor 2 phosphorylation and translational control in metabolism
.
Adv Nutr
.
2012
;
3
(
3
):
307
-
321
.
43.
Donnelly
N
,
Gorman
AM
,
Gupta
S
,
Samali
A
.
The eIF2α kinases: their structures and functions
.
Cell Mol Life Sci
.
2013
;
70
(
19
):
3493
-
3511
.
44.
Anda
S
,
Zach
R
,
Grallert
B
.
Activation of Gcn2 in response to different stresses
.
PLoS One
.
2017
;
12
(
8
):
e0182143
.
45.
Chen
WC
,
Yuan
JS
,
Xing
Y
, et al
.
An integrated analysis of heterogeneous drug responses in acute myeloid leukemia that enables the discovery of predictive biomarkers
.
Cancer Res
.
2016
;
76
(
5
):
1214
-
1224
.
46.
Ng
SW
,
Mitchell
A
,
Kennedy
JA
, et al
.
A 17-gene stemness score for rapid determination of risk in acute leukaemia
.
Nature
.
2016
;
540
(
7633
):
433
-
437
.
47.
Jiang
BH
,
Liu
LZ
.
Role of mTOR in anticancer drug resistance: perspectives for improved drug treatment
.
Drug Resist Updat
.
2008
;
11
(
3
):
63
-
76
.
48.
Ye
J
,
Kumanova
M
,
Hart
LS
, et al
.
The GCN2-ATF4 pathway is critical for tumour cell survival and proliferation in response to nutrient deprivation
.
EMBO J
.
2010
;
29
(
12
):
2082
-
2096
.
49.
Peidis
P
,
Papadakis
AI
,
Rajesh
K
,
Koromilas
AE
.
HDAC pharmacological inhibition promotes cell death through the eIF2α kinases PKR and GCN2
.
Aging (Albany NY)
.
2010
;
2
(
10
):
669
-
677
.
50.
Canal
M
,
Romaní-Aumedes
J
,
Martín-Flores
N
,
Pérez-Fernández
V
,
Malagelada
C
.
RTP801/REDD1: a stress coping regulator that turns into a troublemaker in neurodegenerative disorders
.
Front Cell Neurosci
.
2014
;
8
:
313
.
51.
Ishikawa
F
,
Yoshida
S
,
Saito
Y
, et al
.
Chemotherapy-resistant human AML stem cells home to and engraft within the bone-marrow endosteal region
.
Nat Biotechnol
.
2007
;
25
(
11
):
1315
-
1321
.
52.
Kreso
A
,
Dick
JE
.
Evolution of the cancer stem cell model
.
Cell Stem Cell
.
2014
;
14
(
3
):
275
-
291
.
53.
Lechman
ER
,
Gentner
B
,
Ng
SW
, et al
.
miR-126 regulates distinct self-renewal outcomes in normal and malignant hematopoietic stem cells [published correction appears in Cancer Cell. 2016;29(4):602-606]
.
Cancer Cell
.
2016
;
29
(
2
):
214
-
228
.
54.
Ye
H
,
Adane
B
,
Khan
N
, et al
.
Leukemic stem cells evade chemotherapy by metabolic adaptation to an adipose tissue niche
.
Cell Stem Cell
.
2016
;
19
(
1
):
23
-
37
.
55.
van Galen
P
,
Mbong
N
,
Kreso
A
, et al
.
Integrated stress response activity marks stem cells in normal hematopoiesis and leukemia
.
Cell Rep
.
2018
;
25
(
5
):
1109
-
1117
.
56.
van Galen
P
,
Kreso
A
,
Mbong
N
, et al
.
The unfolded protein response governs integrity of the haematopoietic stem-cell pool during stress
.
Nature
.
2014
;
510
(
7504
):
268
-
272
.
57.
Shlush
LI
,
Mitchell
A
,
Heisler
L
, et al
.
Tracing the origins of relapse in acute myeloid leukaemia to stem cells
.
Nature
.
2017
;
547
(
7661
):
104
-
108
.
58.
Hope
KJ
,
Jin
L
,
Dick
JE
.
Acute myeloid leukemia originates from a hierarchy of leukemic stem cell classes that differ in self-renewal capacity
.
Nat Immunol
.
2004
;
5
(
7
):
738
-
743
.
You do not currently have access to this content.

Sign in via your Institution

Sign In