Key Points

  • ZAP-70 is essential to maintain a constitutive survival signal for CLL cells and is directly involved in the expression of CCL3 and CCL4.

  • Upon BCR activation, ZAP-70 increasingly forms complexes with ribosomes and promotes MYC expression and protein synthesis.

Abstract

The expression of ZAP-70 in a subset of chronic lymphocytic leukemia (CLL) patients strongly correlates with a more aggressive clinical course, although the exact underlying mechanisms remain elusive. The ability of ZAP-70 to enhance B-cell receptor (BCR) signaling, independently of its kinase function, is considered to contribute. We used RNA-sequencing and proteomic analyses of primary cells differing only in their expression of ZAP-70 to further define how ZAP-70 increases the aggressiveness of CLL. We identified that ZAP-70 is directly required for cell survival in the absence of an overt BCR signal, which can compensate for ZAP-70 deficiency as an antiapoptotic signal. In addition, the expression of ZAP-70 regulates the transcription of factors regulating the recruitment and activation of T cells, such as CCL3, CCL4, and IL4I1. Quantitative mass spectrometry of double–cross-linked ZAP-70 complexes further demonstrated constitutive and direct protein-protein interactions between ZAP-70 and BCR-signaling components. Unexpectedly, ZAP-70 also binds to ribosomal proteins, which is not dependent on, but is further increased by, BCR stimulation. Importantly, decreased expression of ZAP-70 significantly reduced MYC expression and global protein synthesis, providing evidence that ZAP-70 contributes to translational dysregulation in CLL. In conclusion, ZAP-70 constitutively promotes cell survival, microenvironment interactions, and protein synthesis in CLL cells, likely to improve cellular fitness and to further drive disease progression.

REFERENCES

1.
Iwashima
M
,
Irving
BA
,
van Oers
NS
,
Chan
AC
,
Weiss
A
.
Sequential interactions of the TCR with two distinct cytoplasmic tyrosine kinases
.
Science
.
1994
;
263
(
5150
):
1136
-
1139
.
2.
Wang
H
,
Kadlecek
TA
,
Au-Yeung
BB
, et al
.
ZAP-70: an essential kinase in T-cell signaling
.
Cold Spring Harb Perspect Biol
.
2010
;
2
(
5
):
a002279
.
3.
Crespo
M
,
Bosch
F
,
Villamor
N
, et al
.
ZAP-70 expression as a surrogate for immunoglobulin-variable-region mutations in chronic lymphocytic leukemia
.
N Engl J Med
.
2003
;
348
(
18
):
1764
-
1775
.
4.
Wiestner
A
,
Rosenwald
A
,
Barry
TS
, et al
.
ZAP-70 expression identifies a chronic lymphocytic leukemia subtype with unmutated immunoglobulin genes, inferior clinical outcome, and distinct gene expression profile
.
Blood
.
2003
;
101
(
12
):
4944
-
4951
.
5.
Rassenti
LZ
,
Huynh
L
,
Toy
TL
, et al
.
ZAP-70 compared with immunoglobulin heavy-chain gene mutation status as a predictor of disease progression in chronic lymphocytic leukemia
.
N Engl J Med
.
2004
;
351
(
9
):
893
-
901
.
6.
Gobessi
S
,
Laurenti
L
,
Longo
PG
,
Sica
S
,
Leone
G
,
Efremov
DG
.
ZAP-70 enhances B-cell-receptor signaling despite absent or inefficient tyrosine kinase activation in chronic lymphocytic leukemia and lymphoma B cells
.
Blood
.
2007
;
109
(
5
):
2032
-
2039
.
7.
Chen
L
,
Huynh
L
,
Apgar
J
, et al
.
ZAP-70 enhances IgM signaling independent of its kinase activity in chronic lymphocytic leukemia
.
Blood
.
2008
;
111
(
5
):
2685
-
2692
.
8.
Chen
L
,
Widhopf
G
,
Huynh
L
, et al
.
Expression of ZAP-70 is associated with increased B-cell receptor signaling in chronic lymphocytic leukemia
.
Blood
.
2002
;
100
(
13
):
4609
-
4614
.
9.
Mockridge
CI
,
Potter
KN
,
Wheatley
I
,
Neville
LA
,
Packham
G
,
Stevenson
FK
.
Reversible anergy of sIgM-mediated signaling in the two subsets of CLL defined by VH-gene mutational status
.
Blood
.
2007
;
109
(
10
):
4424
-
4431
.
10.
Burger
JA
,
Quiroga
MP
,
Hartmann
E
, et al
.
High-level expression of the T-cell chemokines CCL3 and CCL4 by chronic lymphocytic leukemia B cells in nurselike cell cocultures and after BCR stimulation
.
Blood
.
2009
;
113
(
13
):
3050
-
3058
.
11.
Richardson
SJ
,
Matthews
C
,
Catherwood
MA
, et al
.
ZAP-70 expression is associated with enhanced ability to respond to migratory and survival signals in B-cell chronic lymphocytic leukemia (B-CLL)
.
Blood
.
2006
;
107
(
9
):
3584
-
3592
.
12.
Calpe
E
,
Codony
C
,
Baptista
MJ
, et al
.
ZAP-70 enhances migration of malignant B lymphocytes toward CCL21 by inducing CCR7 expression via IgM-ERK1/2 activation
.
Blood
.
2011
;
118
(
16
):
4401
-
4410
.
13.
Calpe
E
,
Purroy
N
,
Carpio
C
, et al
.
ZAP-70 promotes the infiltration of malignant B-lymphocytes into the bone marrow by enhancing signaling and migration after CXCR4 stimulation
.
PLoS One
.
2013
;
8
(
12
):
e81221
.
14.
Papachristou
EK
,
Kishore
K
,
Holding
AN
, et al
.
A quantitative mass spectrometry-based approach to monitor the dynamics of endogenous chromatin-associated protein complexes
.
Nat Commun
.
2018
;
9
(
1
):
2311
.
15.
Puente
XS
,
Pinyol
M
,
Quesada
V
, et al
.
Whole-genome sequencing identifies recurrent mutations in chronic lymphocytic leukaemia
.
Nature
.
2011
;
475
(
7354
):
101
-
105
.
16.
Sadik
A
,
Somarribas Patterson
LF
,
Öztürk
S
, et al
.
IL4I1 Is a metabolic immune checkpoint that activates the AHR and promotes tumor progression
.
Cell
.
2020
;
182
(
5
):
1252
-
1270.e34
.
17.
Mohammed
H
,
Taylor
C
,
Brown
GD
,
Papachristou
EK
,
Carroll
JS
,
D’Santos
CS
.
Rapid immunoprecipitation mass spectrometry of endogenous proteins (RIME) for analysis of chromatin complexes
.
Nat Protoc
.
2016
;
11
(
2
):
316
-
326
.
18.
Roit
FD
,
Engelberts
PJ
,
Taylor
RP
, et al
.
Ibrutinib interferes with the cell-mediated anti-tumour activities of therapeutic CD20 antibodies: implications for combination therapy
.
Haematologica
.
2014
;
100
(
1
):
77
-
86
.
19.
Roux
KJ
,
Kim
DI
,
Raida
M
,
Burke
B
.
A promiscuous biotin ligase fusion protein identifies proximal and interacting proteins in mammalian cells
.
J Cell Biol
.
2012
;
196
(
6
):
801
-
810
.
20.
Hörner
M
,
Eble
J
,
Yousefi
OS
, et al
.
Light-controlled affinity purification of protein complexes exemplified by the resting ZAP70 interactome
.
Front Immunol
.
2019
;
10
:
226
.
21.
Sbarrato
T
,
Horvilleur
E
,
Pöyry
T
, et al
.
A ribosome-related signature in peripheral blood CLL B cells is linked to reduced survival following treatment
.
Cell Death Dis
.
2016
;
7
(
6
):
e2249
.
22.
Goodfellow
HS
,
Frushicheva
MP
,
Ji
Q
, et al
.
The catalytic activity of the kinase ZAP-70 mediates basal signaling and negative feedback of the T cell receptor pathway
.
Sci Signal
.
2015
;
8
(
377
):
ra49
.
23.
Yeomans
A
,
Thirdborough
SM
,
Valle-Argos
B
, et al
.
Engagement of the B-cell receptor of chronic lymphocytic leukemia cells drives global and MYC-specific mRNA translation
.
Blood
.
2016
;
127
(
4
):
449
-
457
.
24.
Seifert
M
,
Sellmann
L
,
Bloehdorn
J
, et al
.
Cellular origin and pathophysiology of chronic lymphocytic leukemia
.
J Exp Med
.
2012
;
209
(
12
):
2183
-
2198
.
25.
Ringshausen
I
,
Schneller
F
,
Bogner
C
, et al
.
Constitutively activated phosphatidylinositol-3 kinase (PI-3K) is involved in the defect of apoptosis in B-CLL: association with protein kinase Cdelta
.
Blood
.
2002
;
100
(
10
):
3741
-
3748
.
26.
Sivina
M
,
Hartmann
E
,
Kipps
TJ
, et al
.
CCL3 (MIP-1α) plasma levels and the risk for disease progression in chronic lymphocytic leukemia
.
Blood
.
2011
;
117
(
5
):
1662
-
1669
.
27.
Hartmann
EM
,
Rudelius
M
,
Burger
JA
,
Rosenwald
A
.
CCL3 chemokine expression by chronic lymphocytic leukemia cells orchestrates the composition of the microenvironment in lymph node infiltrates
.
Leuk Lymphoma
.
2016
;
57
(
3
):
563
-
571
.
28.
Perrot
A
,
Pionneau
C
,
Nadaud
S
, et al
.
A unique proteomic profile on surface IgM ligation in unmutated chronic lymphocytic leukemia
.
Blood
.
2011
;
118
(
4
):
e1
-
e15
.
29.
Johnston
HE
,
Carter
MJ
,
Larrayoz
M
, et al
.
Proteomics profiling of CLL versus healthy B-cells identifies putative therapeutic targets and a subtype-independent signature of spliceosome dysregulation
.
Mol Cell Proteomics
.
2018
;
17
(
4
):
776
-
791
.
30.
Bretones
G
,
Álvarez
MG
,
Arango
JR
, et al
.
Altered patterns of global protein synthesis and translational fidelity in RPS15-mutated chronic lymphocytic leukemia
.
Blood
.
2018
;
132
(
22
):
2375
-
2388
.
31.
Miller
JL
,
Cimen
H
,
Koc
H
,
Koc
EC
.
Phosphorylated proteins of the mammalian mitochondrial ribosome: implications in protein synthesis
.
J Proteome Res
.
2009
;
8
(
10
):
4789
-
4798
.
32.
Soung
GY
,
Miller
JL
,
Koc
H
,
Koc
EC
.
Comprehensive analysis of phosphorylated proteins of Escherichia coli ribosomes
.
J Proteome Res
.
2009
;
8
(
7
):
3390
-
3402
.
33.
Schmidt
EV
.
The role of c-myc in regulation of translation initiation
.
Oncogene
.
2004
;
23
(
18
):
3217
-
3221
.
34.
Lin
C-J
,
Cencic
R
,
Mills
JR
,
Robert
F
,
Pelletier
J
.
c-Myc and eIF4F are components of a feedforward loop that links transcription and translation
.
Cancer Res
.
2008
;
68
(
13
):
5326
-
5334
.
You do not currently have access to this content.

Sign in via your Institution

Sign In