• Venetoclax-sensitive myeloma retains a B cell–like pattern of gene expression and chromatin accessibility.

  • B-cell genes may serve as a better biomarker for predicting venetoclax response than t(11;14) alone.

Venetoclax is a highly potent, selective BCL2 inhibitor capable of inducing apoptosis in cells dependent on BCL2 for survival. Most myeloma is MCL1-dependent; however, a subset of myeloma enriched for translocation t(11;14) is codependent on BCL2 and thus sensitive to venetoclax. The biology underlying this heterogeneity remains poorly understood. We show that knockdown of cyclin D1 does not induce resistance to venetoclax, arguing against a direct role for cyclin D1 in venetoclax sensitivity. To identify other factors contributing to venetoclax response, we studied a panel of 31 myeloma cell lines and 25 patient samples tested for venetoclax sensitivity. In cell lines, we corroborated our previous observation that BIM binding to BCL2 correlates with venetoclax response and further showed that knockout of BIM results in decreased venetoclax sensitivity. RNA-sequencing analysis identified expression of B-cell genes as enriched in venetoclax-sensitive myeloma, although no single gene consistently delineated sensitive and resistant cells. However, a panel of cell surface makers correlated well with ex vivo prediction of venetoclax response in 21 patient samples and may serve as a biomarker independent of t(11;14). Assay for transposase-accessible chromatin sequencing of myeloma cell lines also identified an epigenetic program in venetoclax-sensitive cells that was more similar to B cells than that of venetoclax-resistant cells, as well as enrichment for basic leucine zipper domain–binding motifs such as BATF. Together, these data indicate that remnants of B-cell biology are associated with BCL2 dependency and point to novel biomarkers of venetoclax-sensitive myeloma independent of t(11;14).

1.
Genadieva Stavric
S
,
Bonello
F
,
Bringhen
S
,
Boccadoro
M
,
Larocca
A
.
How is patient care for multiple myeloma advancing?
Expert Rev Hematol
.
2017
;
10
(
6
):
551
-
561
.
2.
Palumbo
A
,
Anderson
K
.
Multiple myeloma
.
N Engl J Med
.
2011
;
364
(
11
):
1046
-
1060
.
3.
Chipuk
JE
,
Moldoveanu
T
,
Llambi
F
,
Parsons
MJ
,
Green
DR
.
The BCL-2 family reunion
.
Mol Cell
.
2010
;
37
(
3
):
299
-
310
.
4.
Strasser
A
,
Cory
S
,
Adams
JM
.
Deciphering the rules of programmed cell death to improve therapy of cancer and other diseases
.
EMBO J
.
2011
;
30
(
18
):
3667
-
3683
.
5.
Scarfò
L
,
Ghia
P
.
Reprogramming cell death: BCL2 family inhibition in hematological malignancies
.
Immunol Lett
.
2013
;
155
(
1-2
):
36
-
39
.
6.
Kotschy
A
,
Szlavik
Z
,
Murray
J
, et al
.
The MCL1 inhibitor S63845 is tolerable and effective in diverse cancer models
.
Nature
.
2016
;
538
(
7626
):
477
-
482
.
7.
Tron
AE
,
Belmonte
MA
,
Adam
A
, et al
.
Discovery of Mcl-1-specific inhibitor AZD5991 and preclinical activity in multiple myeloma and acute myeloid leukemia
.
Nat Commun
.
2018
;
9
(
1
):
5341
.
8.
Caenepeel
S
,
Brown
SP
,
Belmontes
B
, et al
.
AMG 176, a selective MCL1 inhibitor, is effective in hematologic cancer models alone and in combination with established therapies
.
Cancer Discov
.
2018
;
8
(
12
):
1582
-
1597
.
9.
Ng
SY
,
Davids
MS
.
Selective Bcl-2 inhibition to treat chronic lymphocytic leukemia and non-Hodgkin lymphoma
.
Clin Adv Hematol Oncol
.
2014
;
12
(
4
):
224
-
229
.
10.
Souers
AJ
,
Leverson
JD
,
Boghaert
ER
, et al
.
ABT-199, a potent and selective BCL-2 inhibitor, achieves antitumor activity while sparing platelets
.
Nat Med
.
2013
;
19
(
2
):
202
-
208
.
11.
Roberts
AW
,
Davids
MS
,
Pagel
JM
, et al
.
Targeting BCL2 with venetoclax in relapsed chronic lymphocytic leukemia
.
N Engl J Med
.
2016
;
374
(
4
):
311
-
322
.
12.
Barwick
BG
,
Scharer
CD
,
Bally
APR
,
Boss
JM
.
Plasma cell differentiation is coupled to division-dependent DNA hypomethylation and gene regulation
.
Nat Immunol
.
2016
;
17
(
10
):
1216
-
1225
.
13.
Zhang
B
,
Gojo
I
,
Fenton
RG
.
Myeloid cell factor-1 is a critical survival factor for multiple myeloma
.
Blood
.
2002
;
99
(
6
):
1885
-
1893
.
14.
Carrington
EM
,
Vikstrom
IB
,
Light
A
, et al
.
BH3 mimetics antagonizing restricted prosurvival Bcl-2 proteins represent another class of selective immune modulatory drugs
.
Proc Natl Acad Sci USA
.
2010
;
107
(
24
):
10967
-
10971
.
15.
Peperzak
V
,
Vikström
I
,
Walker
J
, et al
.
Mcl-1 is essential for the survival of plasma cells [published correction appears in Nat Immunol. 2013;14(8):877]
.
Nat Immunol
.
2013
;
14
(
3
):
290
-
297
.
16.
Bodet
L
,
Gomez-Bougie
P
,
Touzeau
C
, et al
.
ABT-737 is highly effective against molecular subgroups of multiple myeloma
.
Blood
.
2011
;
118
(
14
):
3901
-
3910
.
17.
Morales
AA
,
Kurtoglu
M
,
Matulis
SM
, et al
.
Distribution of Bim determines Mcl-1 dependence or codependence with Bcl-xL/Bcl-2 in Mcl-1-expressing myeloma cells
.
Blood
.
2011
;
118
(
5
):
1329
-
1339
.
18.
Touzeau
C
,
Dousset
C
,
Le Gouill
S
, et al
.
The Bcl-2 specific BH3 mimetic ABT-199: a promising targeted therapy for t(11;14) multiple myeloma
.
Leukemia
.
2014
;
28
(
1
):
210
-
212
.
19.
Gong
JN
,
Khong
T
,
Segal
D
, et al
.
Hierarchy for targeting prosurvival BCL2 family proteins in multiple myeloma: pivotal role of MCL1
.
Blood
.
2016
;
128
(
14
):
1834
-
1844
.
20.
Kumar
S
,
Kaufman
JL
,
Gasparetto
C
, et al
.
Efficacy of venetoclax as targeted therapy for relapsed/refractory t(11;14) multiple myeloma
.
Blood
.
2017
;
130
(
22
):
2401
-
2409
.
21.
Matulis
SM
,
Gupta
VA
,
Nooka
AK
, et al
.
Dexamethasone treatment promotes Bcl-2 dependence in multiple myeloma resulting in sensitivity to venetoclax
.
Leukemia
.
2016
;
30
(
5
):
1086
-
1093
.
22.
Punnoose
EA
,
Leverson
JD
,
Peale
F
, et al
.
Expression profile of BCL-2, BCL-XL, and MCL-1 predicts pharmacological response to the BCL-2 selective antagonist venetoclax in multiple myeloma models
.
Mol Cancer Ther
.
2016
;
15
(
5
):
1132
-
1144
.
23.
Touzeau
C
,
Ryan
J
,
Guerriero
J
, et al
.
BH3 profiling identifies heterogeneous dependency on Bcl-2 family members in multiple myeloma and predicts sensitivity to BH3 mimetics
.
Leukemia
.
2016
;
30
(
3
):
761
-
764
.
24.
Gupta
VA
,
Matulis
SM
,
Conage-Pough
JE
, et al
.
Bone marrow microenvironment-derived signals induce Mcl-1 dependence in multiple myeloma
.
Blood
.
2017
;
129
(
14
):
1969
-
1979
.
25.
Dousset
C
,
Maïga
S
,
Gomez-Bougie
P
, et al
.
BH3 profiling as a tool to identify acquired resistance to venetoclax in multiple myeloma
.
Br J Haematol
.
2017
;
179
(
4
):
684
-
688
.
26.
Grad
JM
,
Bahlis
NJ
,
Reis
I
,
Oshiro
MM
,
Dalton
WS
,
Boise
LH
.
Ascorbic acid enhances arsenic trioxide-induced cytotoxicity in multiple myeloma cells
.
Blood
.
2001
;
98
(
3
):
805
-
813
.
27.
Morales
AA
,
Gutman
D
,
Lee
KP
,
Boise
LH
.
BH3-only proteins Noxa, Bmf, and Bim are necessary for arsenic trioxide-induced cell death in myeloma
.
Blood
.
2008
;
111
(
10
):
5152
-
5162
.
28.
Matulis
SM
,
Gupta
VA
,
Neri
P
, et al
.
Functional profiling of venetoclax sensitivity can predict clinical response in multiple myeloma
.
Leukemia
.
2019
;
33
(
5
):
1291
-
1296
.
29.
Wang
T
,
Wei
JJ
,
Sabatini
DM
,
Lander
ES
.
Genetic screens in human cells using the CRISPR-Cas9 system
.
Science
.
2014
;
343
(
6166
):
80
-
84
.
30.
Sanson
KR
,
Hanna
RE
,
Hegde
M
, et al
.
Optimized libraries for CRISPR-Cas9 genetic screens with multiple modalities
.
Nat Commun
.
2018
;
9
(
1
):
5416
.
31.
Barwick
BG
,
Scharer
CD
,
Martinez
RJ
, et al
.
B cell activation and plasma cell differentiation are inhibited by de novo DNA methylation
.
Nat Commun
.
2018
;
9
(
1
):
1900
.
32.
Scharer
CD
,
Blalock
EL
,
Barwick
BG
, et al
.
ATAC-seq on biobanked specimens defines a unique chromatin accessibility structure in naïve SLE B cells
.
Sci Rep
.
2016
;
6
(
1
):
27030
.
33.
Gomez-Bougie
P
,
Maiga
S
,
Tessoulin
B
, et al
.
BH3-mimetic toolkit guides the respective use of BCL2 and MCL1 BH3-mimetics in myeloma treatment
.
Blood
.
2018
;
132
(
25
):
2656
-
2669
.
34.
Dlugosz
PJ
,
Billen
LP
,
Annis
MG
, et al
.
Bcl-2 changes conformation to inhibit Bax oligomerization
.
EMBO J
.
2006
;
25
(
11
):
2287
-
2296
.
35.
Mori
S
,
Rempel
RE
,
Chang
JT
, et al
.
Utilization of pathway signatures to reveal distinct types of B lymphoma in the Emicro-myc model and human diffuse large B-cell lymphoma
.
Cancer Res
.
2008
;
68
(
20
):
8525
-
8534
.
36.
Shi
W
,
Liao
Y
,
Willis
SN
, et al
.
Transcriptional profiling of mouse B cell terminal differentiation defines a signature for antibody-secreting plasma cells
.
Nat Immunol
.
2015
;
16
(
6
):
663
-
673
.
37.
Tarte
K
,
Zhan
F
,
De Vos
J
,
Klein
B
,
Shaughnessy
J
Jr
.
Gene expression profiling of plasma cells and plasmablasts: toward a better understanding of the late stages of B-cell differentiation
.
Blood
.
2003
;
102
(
2
):
592
-
600
.
38.
Zhan
F
,
Huang
Y
,
Colla
S
, et al
.
The molecular classification of multiple myeloma
.
Blood
.
2006
;
108
(
6
):
2020
-
2028
.
39.
Jin
Y
,
Chen
K
,
De Paepe
A
, et al
.
Active enhancer and chromatin accessibility landscapes chart the regulatory network of primary multiple myeloma
.
Blood
.
2018
;
131
(
19
):
2138
-
2150
.
40.
Murphy
TL
,
Tussiwand
R
,
Murphy
KM
.
Specificity through cooperation: BATF-IRF interactions control immune-regulatory networks
.
Nat Rev Immunol
.
2013
;
13
(
7
):
499
-
509
.
41.
Boise
LH
,
Kaufman
JL
,
Bahlis
NJ
,
Lonial
S
,
Lee
KP
.
The Tao of myeloma
.
Blood
.
2014
;
124
(
12
):
1873
-
1879
.
42.
Kaufman
JL
,
Gasparetto
CJ
,
Mikhael
J
, et al
.
Phase 1 study of venetoclax in combination with dexamethasone as targeted therapy for t(11;14) relapsed/refractory multiple myeloma
.
Blood
.
2017
;
130
(
suppl 1
):
3131
.
43.
Moreau
P
,
Chanan-Khan
A
,
Roberts
AW
, et al
.
Promising efficacy and acceptable safety of venetoclax plus bortezomib and dexamethasone in relapsed/refractory MM
.
Blood
.
2017
;
130
(
22
):
2392
-
2400
.
You do not currently have access to this content.

Sign in via your Institution

Sign In