Key Points

  • Treatment of RS PDX models with Duv and Ven combination induces tumor regression and prolongs survival.

  • Synergism between Duv and Ven is mediated by GSK3β, a key player at the crossroad between PI3K and apoptotic pathways.

Abstract

A small subset of cases of chronic lymphocytic leukemia undergoes transformation to diffuse large B-cell lymphoma, Richter syndrome (RS), which is associated with a poor prognosis. Conventional chemotherapy results in limited responses, underlining the need for novel therapeutic strategies. Here, we investigate the ex vivo and in vivo efficacy of the dual phosphatidylinositol 3-kinase-δ/γ (PI3K-δ/γ) inhibitor duvelisib (Duv) and the Bcl-2 inhibitor venetoclax (Ven) using 4 different RS patient-derived xenograft (PDX) models. Ex vivo exposure of RS cells to Duv, Ven, or their combination results in variable apoptotic responses, in line with the expression levels of target proteins. Although RS1316, IP867/17, and RS9737 cells express PI3K-δ, PI3K-γ, and Bcl-2 and respond to the drugs, RS1050 cells, expressing very low levels of PI3K-γ and lacking Bcl-2, are fully resistant. Moreover, the combination of these drugs is more effective than each agent alone. When tested in vivo, RS1316 and IP867/17 show the best tumor growth inhibition responses, with the Duv/Ven combination leading to complete remission at the end of treatment. The synergistic effect of Duv and Ven relies on the crosstalk between PI3K and apoptotic pathways occurring at the GSK3β level. Indeed, inhibition of PI3K signaling by Duv results in GSK3β activation, leading to ubiquitination and subsequent degradation of both c-Myc and Mcl-1, making RS cells more sensitive to Bcl-2 inhibition by Ven. This work provides, for the first time, a proof of concept of the efficacy of dual targeting of PI3K-δ/γ and Bcl-2 in RS and providing an opening for a Duv/Ven combination for these patients. Clinical studies in aggressive lymphomas, including RS, are under way. This trial was registered at www.clinicaltrials.gov as #NCT03892044.

REFERENCES

1.
Rossi
D
,
Gaidano
G
.
Richter syndrome: pathogenesis and management
.
Semin Oncol
.
2016
;
43
(
2
):
311
-
319
.
2.
Rossi
D
,
Spina
V
,
Gaidano
G
.
Biology and treatment of Richter syndrome
.
Blood
.
2018
;
131
(
25
):
2761
-
2772
.
3.
Allan
JN
,
Furman
RR
.
Current trends in the management of Richter’s syndrome
.
Int J Hematol Oncol
.
2019
;
7
(
4
):
IJH09
.
4.
Falchi
L
,
Keating
MJ
,
Marom
EM
, et al
.
Correlation between FDG/PET, histology, characteristics, and survival in 332 patients with chronic lymphoid leukemia
.
Blood
.
2014
;
123
(
18
):
2783
-
2790
.
5.
Chigrinova
E
,
Rinaldi
A
,
Kwee
I
, et al
.
Two main genetic pathways lead to the transformation of chronic lymphocytic leukemia to Richter syndrome
.
Blood
.
2013
;
122
(
15
):
2673
-
2682
.
6.
Fabbri
G
,
Khiabanian
H
,
Holmes
AB
, et al
.
Genetic lesions associated with chronic lymphocytic leukemia transformation to Richter syndrome
.
J Exp Med
.
2013
;
210
(
11
):
2273
-
2288
.
7.
Parikh
SA
,
Kay
NE
,
Shanafelt
TD
.
How we treat Richter syndrome
.
Blood
.
2014
;
123
(
11
):
1647
-
1657
.
8.
Parikh
SA
,
Rabe
KG
,
Call
TG
, et al
.
Diffuse large B-cell lymphoma (Richter syndrome) in patients with chronic lymphocytic leukaemia (CLL): a cohort study of newly diagnosed patients
.
Br J Haematol
.
2013
;
162
(
6
):
774
-
782
.
9.
Rossi
D
,
Spina
V
,
Cerri
M
, et al
.
Stereotyped B-cell receptor is an independent risk factor of chronic lymphocytic leukemia transformation to Richter syndrome
.
Clin Cancer Res
.
2009
;
15
(
13
):
4415
-
4422
.
10.
Fischer
A
,
Bastian
S
,
Cogliatti
S
, et al
.
Ibrutinib-induced rapid response in chemotherapy-refractory Richter’s syndrome
.
Hematol Oncol
.
2018
;
36
(
1
):
370
-
371
.
11.
Giri
S
,
Hahn
A
,
Yaghmour
G
,
Martin
MG
.
Ibrutinib has some activity in Richter’s syndrome
.
Blood Cancer J
.
2015
;
5
(
1
):
e277
.
12.
Tsang
M
,
Shanafelt
TD
,
Call
TG
, et al
.
The efficacy of ibrutinib in the treatment of Richter syndrome
.
Blood
.
2015
;
125
(
10
):
1676
-
1678
.
13.
Byrd
JC
,
Harrington
B
,
O’Brien
S
, et al
.
Acalabrutinib (ACP-196) in relapsed chronic lymphocytic leukemia
.
N Engl J Med
.
2016
;
374
(
4
):
323
-
332
.
14.
Kollipara
R
,
Szymanski
K
,
Mahon
B
,
Venugopal
P
.
Durable response to venetoclax monotherapy in Richter’s syndrome: a case report and review of literature
.
J Hematol (Brossard)
.
2019
;
8
(
2
):
60
-
63
.
15.
Visentin
A
,
Imbergamo
S
,
Scomazzon
E
, et al
.
BCR kinase inhibitors, idealisib and ibrutinib, are active and effective in Richter syndrome
.
Br J Hematol
.
2019
;
185
(
1
):
193
-
197
.
16.
Zhao
X
,
Lwin
T
,
Silva
A
, et al
.
Unification of de novo and acquired ibrutinib resistance in mantle cell lymphoma
.
Nat Commun
.
2017
;
8
(
1
):
14920
.
17.
Crombie
J
,
Tyekucheva
S
,
Savell
A
, et al
.
A phase I study of duvelisib and venetoclax in patients with relapsed or refractory CLL / SLL [abstract]
.
Blood
.
2019
;
134
(
suppl 1
). Abstract
1763
.
18.
Crombie
J
,
Tyekucheva
S
,
Wang
Z
, et al
.
Updated results from a phase I/II study of duvelisib and venetoclax in patients with relapsed or refractory CLL/SLL or Richter’s syndrome
.
Blood
.
2020
;
136
(
suppl 1
):
46
-
47
.
19.
Vaisitti
T
,
Braggio
E
,
Allan
JN
, et al
.
Novel Richter syndrome xenograft models to study genetic architecture, biology, and therapy responses
.
Cancer Res
.
2018
;
78
(
13
):
3413
-
3420
.
20.
Vaisitti
T
,
Arruga
F
,
Vitale
N
, et al
.
ROR1 targeting with the antibody drug-conjugate VLS-101 is effective in Richter syndrome patient-derived xenograft mouse models
.
Blood
.
2021
;
blood.2020008404
.
21.
Pede
V
,
Rombout
A
,
Vermeire
J
, et al
.
CLL cells respond to B-cell receptor stimulation with a microRNA/mRNA signature associated with MYC activation and cell cycle progression [published correction appears in PLoS One. 2014;9(1)]
.
PLoS One
.
2013
;
8
(
4
):
e60275
.
22.
Casey
SC
,
Baylot
V
,
Felsher
DW
.
The myc oncogene is a global regulator of the immune response
.
Blood
.
2018
;
131
(
18
):
2007
-
2015
.
23.
Opferman
JT
.
Unraveling MCL-1 degradation
.
Cell Death Differ
.
2006
;
13
(
8
):
1260
-
1262
.
24.
Bloedjes
TA
,
de Wilde
G
,
Maas
C
, et al
.
AKT signaling restrains tumor suppressive functions of FOXO transcription factors and GSK3 kinase in multiple myeloma
.
Blood Adv
.
2020
;
4
(
17
):
4151
-
4164
.
25.
Harrington
CT
,
Sotillo
E
,
Robert
A
, et al
.
Transient stabilization, rather than inhibition, of MYC amplifies extrinsic apoptosis and therapeutic responses in refractory B-cell lymphoma [published correction appears in Leukemia. 2020;34(5):1485]
.
Leukemia
.
2019
;
33
(
10
):
2429
-
2441
.
26.
Kapoor
I
,
Bodo
J
,
Hill
BT
,
Hsi
ED
,
Almasan
A
.
Targeting BCL-2 in B-cell malignancies and overcoming therapeutic resistance
.
Cell Death Dis
.
2020
;
11
(
11
):
941
.
27.
Sasi
BK
,
Martines
C
,
Xerxa
E
, et al
.
Inhibition of SYK or BTK augments venetoclax sensitivity in SHP1-negative/BCL-2-positive diffuse large B-cell lymphoma
.
Leukemia
.
2019
;
33
(
10
):
2416
-
2428
.
28.
Bojarczuk
K
,
Wienand
K
,
Ryan
JA
, et al
.
Targeted inhibition of PI3Kα/δ is synergistic with BCL-2 blockade in genetically defined subtypes of DLBCL
.
Blood
.
2019
;
133
(
1
):
70
-
80
.
29.
Appleby
N
,
Eyre
TA
,
Cabes
M
, et al
.
The STELLAR trial protocol: a prospective multicentre trial for Richter’s syndrome consisting of a randomised trial investigation CHOP-R with or without acalabrutinib for newly diagnosed RS and a single-arm platform study for evaluation of novel agents in relapsed disease
.
BMC Cancer
.
2019
;
19
(
1
):
471
.
30.
Jain
N
,
Ferrajoli
A
,
Basu
S
, et al
.
A phase II trial of nivolumab combined with ibrutinib for patients with Richter transformation [abstract]
.
Blood
.
2018
;
132
(
suppl 1
). Abstract
296
.
31.
Xia
L
,
Wang
Y
,
Li
T
, et al
.
The clinical study on treatment of CD19-directed chimeric antigen receptor-modified T cells in a case of refractory Richter syndrome
.
Cancer Med
.
2019
;
8
(
6
):
2930
-
2941
.
32.
Vaisitti
T
,
Gaudino
F
,
Ouk
S
, et al
.
Targeting metabolism and survival in chronic lymphocytic leukemia and Richter syndrome cells by a novel NF-κB inhibitor
.
Haematologica
.
2017
;
102
(
11
):
1878
-
1889
.
33.
Rahmani
M
,
Nkwocha
J
,
Hawkins
E
, et al
.
Cotargeting BCL-2 and PI3K induces BAX-dependent mitochondrial apoptosis in AML cells
.
Cancer Res
.
2018
;
78
(
11
):
3075
-
3086
.
34.
Patel
VM
,
Balakrishnan
K
,
Douglas
M
, et al
.
Duvelisib treatment is associated with altered expression of apoptotic regulators that helps in sensitization of chronic lymphocytic leukemia cells to venetoclax (ABT-199)
.
Leukemia
.
2017
;
31
(
9
):
1872
-
1881
.
35.
Faia
K
,
White
K
,
Murphy
E
, et al
.
The phosphoinositide-3 kinase (PI3K)-δ,γ inhibitor, duvelisib shows preclinical synergy with multiple targeted therapies in hematologic malignancies
.
PLoS One
.
2018
;
13
(
8
):
e0200725
.
36.
Punnoose
EA
,
Leverson
JD
,
Peale
F
, et al
.
Expression profile of BCL-2, BCL-XL, and MCL-1 predicts pharmacological response to the BCL-2 selective antagonist venetoclax in multiple myeloma models
.
Mol Cancer Ther
.
2016
;
15
(
5
):
1132
-
1144
.
37.
Guièze
R
,
Liu
VM
,
Rosebrock
D
, et al
.
Mitochondrial reprogramming underlies resistance to BCL-2 inhibition in lymphoid malignancies
.
Cancer Cell
.
2019
;
36
(
4
):
369
-
384.e13
.
You do not currently have access to this content.

Sign in via your Institution

Sign In