Key Points

  • Higher cumulative dose of corticosteroids is associated with early progression after CAR-T therapy in large B-cell lymphoma.

  • Higher cumulative dose and prolonged, early corticosteroid use is associated with shorter overall survival after CAR-T therapy.

Abstract

Corticosteroids are commonly used for the management of severe toxicities associated with chimeric antigen receptor (CAR) T-cell therapy. However, it remains unclear whether their dose, duration, and timing may affect clinical efficacy. Here, we determined the impact of corticosteroids on clinical outcomes in patients with relapsed or refractory large B-cell lymphoma treated with standard of care anti-CD19 CAR T-cell therapy. Among 100 patients evaluated, 60 (60%) received corticosteroids for management of CAR T-cell therapy–associated toxicities. The median cumulative dexamethasone-equivalent dose was 186 mg (range, 8-1803) and the median duration of corticosteroid treatment was 9 days (range, 1-30). Corticosteroid treatment was started between days 0 and 7 in 45 (75%) patients and beyond day 7 in 15 (25%). After a median follow-up of 10 months (95% confidence interval, 8-12 months), use of higher cumulative dose of corticosteroids was associated with significantly shorter progression-free survival. More importantly, higher cumulative dose of corticosteroids, and prolonged and early use after CAR T-cell infusion were associated with significantly shorter overall survival. These results suggest that corticosteroids should be used at the lowest dose and for the shortest duration and their initiation should be delayed whenever clinically feasible while managing CAR T-cell therapy–associated toxicities.

REFERENCES

1.
Locke
FL
,
Ghobadi
A
,
Jacobson
CA
, et al
.
Long-term safety and activity of axicabtagene ciloleucel in refractory large B-cell lymphoma (ZUMA-1): a single-arm, multicentre, phase 1-2 trial
.
Lancet Oncol
.
2019
;
20
(
1
):
31
-
42
.
2.
Schuster
SJ
,
Bishop
MR
,
Tam
CS
, et al;
JULIET Investigators
.
Tisagenlecleucel in adult relapsed or refractory diffuse large B-cell lymphoma
.
N Engl J Med
.
2019
;
380
(
1
):
45
-
56
.
3.
Abramson
JS
,
Palomba
ML
,
Gordon
LI
, et al
.
Lisocabtagene maraleucel for patients with relapsed or refractory large B-cell lymphomas (TRANSCEND NHL 001): a multicentre seamless design study
.
Lancet
.
2020
;
396
(
10254
):
31366
-
31360
.
4.
Deng
Q
,
Han
G
,
Puebla-Osorio
N
, et al
.
Characteristics of anti-CD19 CAR T cell infusion products associated with efficacy and toxicity in patients with large B cell lymphomas
.
Nat Med
.
2020
;
26
(
12
):
1878
-
1887
.
5.
Locke
FL
,
Rossi
JM
,
Neelapu
SS
, et al
.
Tumor burden, inflammation, and product attributes determine outcomes of axicabtagene ciloleucel in large B-cell lymphoma
.
Blood Adv
.
2020
;
4
(
19
):
4898
-
4911
.
6.
Neelapu
SS
,
Locke
FL
,
Bartlett
NL
, et al
.
Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma
.
N Engl J Med
.
2017
;
377
(
26
):
2531
-
2544
.
7.
Jacobson
CA
,
Hunter
BD
,
Redd
R
, et al
.
Axicabtagene ciloleucel in the non-trial setting: outcomes and correlates of response, resistance, and toxicity
.
J Clin Oncol
.
2020
;
38
(
27
):
3095
-
3106
.
8.
Nastoupil
LJ
,
Jain
MD
,
Feng
L
, et al
.
Standard-of-care axicabtagene ciloleucel for relapsed or refractory large B-cell lymphoma: results from the US Lymphoma CAR T Consortium
.
J Clin Oncol
.
2020
;
38
(
27
):
3119
-
3128
.
9.
Paliogianni
F
,
Ahuja
SS
,
Balow
JP
,
Balow
JE
,
Boumpas
DT
.
Novel mechanism for inhibition of human T cells by glucocorticoids. Glucocorticoids inhibit signal transduction through IL-2 receptor
.
J Immunol
.
1993
;
151
(
8
):
4081
-
4089
.
10.
Lanza
L
,
Scudeletti
M
,
Puppo
F
, et al
.
Prednisone increases apoptosis in in vitro activated human peripheral blood T lymphocytes
.
Clin Exp Immunol
.
1996
;
103
(
3
):
482
-
490
.
11.
Franchimont
D
,
Louis
E
,
Dewe
W
, et al
.
Effects of dexamethasone on the profile of cytokine secretion in human whole blood cell cultures
.
Regul Pept
.
1998
;
73
(
1
):
59
-
65
.
12.
Turtle
CJ
,
Hanafi
LA
,
Berger
C
, et al
.
Immunotherapy of non-Hodgkin’s lymphoma with a defined ratio of CD8+ and CD4+ CD19-specific chimeric antigen receptor-modified T cells
.
Sci Transl Med
.
2016
;
8
(
355
):
355ra116
.
13.
Kochenderfer
JN
,
Somerville
RPT
,
Lu
T
, et al
.
Lymphoma remissions caused by anti-CD19 chimeric antigen receptor T cells are associated with high serum interleukin-15 levels
.
J Clin Oncol
.
2017
;
35
(
16
):
1803
-
1813
.
14.
Neelapu
SS
,
Tummala
S
,
Kebriaei
P
, et al
.
Chimeric antigen receptor T-cell therapy - assessment and management of toxicities
.
Nat Rev Clin Oncol
.
2018
;
15
(
1
):
47
-
62
.
15.
Cheson
BD
,
Fisher
RI
,
Barrington
SF
, et al;
United Kingdom National Cancer Research Institute
.
Recommendations for initial evaluation, staging, and response assessment of Hodgkin and non-Hodgkin lymphoma: the Lugano classification
.
J Clin Oncol
.
2014
;
32
(
27
):
3059
-
3068
.
16.
Nastoupil
LJ
,
Jain
MD
,
Spiegel
JY
, et al
.
Axicabtagene ciloleucel (axi-cel) CD19 chimeric antigen receptor (CAR) T-cell therapy for relapsed/refractory large B-cell lymphoma: real world experience [abstract]
.
Blood
.
2018
;
132
(
suppl 1
). Abstract
91
.
17.
Pasquini
MC
,
Locke
FL
,
Herrera
AF
, et al
.
Post-marketing use outcomes of an anti-CD19 chimeric antigen receptor (CAR) T cell therapy, axicabtagene ciloleucel (axi-Cel), for the treatment of large B cell lymphoma (LBCL) in the United States (US) [abstract]
.
Blood
.
2019
;
134
(
suppl 1
). Abstract
764
.
18.
Hay
KA
,
Hanafi
LA
,
Li
D
, et al
.
Kinetics and biomarkers of severe cytokine release syndrome after CD19 chimeric antigen receptor-modified T-cell therapy
.
Blood
.
2017
;
130
(
21
):
2295
-
2306
.
19.
Santomasso
BD
,
Park
JH
,
Salloum
D
, et al
.
Clinical and biological correlates of neurotoxicity associated with CAR T-cell therapy in patients with B-cell acute lymphoblastic leukemia
.
Cancer Discov
.
2018
;
8
(
8
):
958
-
971
.
20.
Strati
P
,
Nastoupil
LJ
,
Westin
J
, et al
.
Clinical and radiologic correlates of neurotoxicity after axicabtagene ciloleucel in large B-cell lymphoma
.
Blood Adv
.
2020
;
4
(
16
):
3943
-
3951
.
21.
Liadi
I
,
Singh
H
,
Romain
G
, et al
.
Individual motile CD4(+) T cells can participate in efficient multikilling through conjugation to multiple tumor cells
.
Cancer Immunol Res
.
2015
;
3
(
5
):
473
-
482
.
22.
Strati
P
,
Ahmed
S
,
Kebriaei
P
, et al
.
Clinical efficacy of anakinra to mitigate CAR T-cell therapy-associated toxicity in large B-cell lymphoma
.
Blood Adv
.
2020
;
4
(
13
):
3123
-
3127
.
You do not currently have access to this content.

Sign in via your Institution

Sign In