Abstract

Platelets play significant and varied roles in cancer progression, as detailed throughout this review series, via direct interactions with cancer cells and by long-range indirect interactions mediated by platelet releasates. Microvesicles (MVs; also referred to as microparticles) released from activated platelets have emerged as major contributors to the platelet-cancer nexus. Interactions of platelet-derived MVs (PMVs) with cancer cells can promote disease progression through multiple mechanisms, but PMVs also harbor antitumor functions. This complex relationship derives from PMVs’ binding to both cancer cells and nontransformed cells in the tumor microenvironment and transferring platelet-derived contents to the target cell, each of which can have stimulatory or modulatory effects. MVs are extracellular vesicles of heterogeneous size, ranging from 100 nm to 1 µm in diameter, shed by living cells during the outward budding of the plasma membrane, entrapping local cytosolic contents in an apparently stochastic manner. Hence, PMVs are encapsulated by a lipid bilayer harboring surface proteins and lipids mirroring the platelet exterior, with internal components including platelet-derived mature messenger RNAs, pre-mRNAs, microRNAs, and other noncoding RNAs, proteins, second messengers, and mitochondria. Each of these elements engages in established and putative PMV functions in cancer. In addition, PMVs contribute to cancer comorbidities because of their roles in coagulation and thrombosis and via interactions with inflammatory cells. However, separating the effects of PMVs from those of platelets in cancer contexts continues to be a major hurdle. This review summarizes our emerging understanding of the complex roles of PMVs in the development and progression of cancer and cancer comorbidities.

REFERENCES

1.
Berckmans
RJ
,
Nieuwland
R
,
Böing
AN
,
Romijn
FP
,
Hack
CE
,
Sturk
A
.
Cell-derived microparticles circulate in healthy humans and support low grade thrombin generation
.
Thromb Haemost
.
2001
;
85
(
4
):
639
-
649
.
2.
Aatonen
MT
,
Ohman
T
,
Nyman
TA
,
Laitinen
S
,
Grönholm
M
,
Siljander
PR
.
Isolation and characterization of platelet-derived extracellular vesicles
.
J Extracell Vesicles
.
2014
;
3
:
24692
.
3.
Żmigrodzka
M
,
Witkowska-Piłaszewicz
O
,
Winnicka
A
.
Platelets extracellular vesicles as regulators of cancer progression-an updated perspective
.
Int J Mol Sci
.
2020
;
21
(
15
):
5195
.
4.
Goubran
H
,
Sabry
W
,
Kotb
R
,
Seghatchian
J
,
Burnouf
T
.
Platelet microparticles and cancer: an intimate cross-talk
.
Transfus Apheresis Sci
.
2015
;
53
(
2
):
168
-
172
.
5.
Kim
HK
,
Song
KS
,
Park
YS
, et al
.
Elevated levels of circulating platelet microparticles, VEGF, IL-6 and RANTES in patients with gastric cancer: possible role of a metastasis predictor
.
Eur J Cancer
.
2003
;
39
(
2
):
184
-
191
.
6.
Mezouar
S
,
Mege
D
,
Darbousset
R
, et al
.
Involvement of platelet-derived microparticles in tumor progression and thrombosis
.
Semin Oncol
.
2014
;
41
(
3
):
346
-
358
.
7.
Lazar
S
,
Goldfinger
LE
.
Platelet microparticles and miRNA transfer in cancer progression: many targets, modes of action, and effects across cancer stages
.
Front Cardiovasc Med
.
2018
;
5
:
13
.
8.
Morel
O
,
Jesel
L
,
Freyssinet
JM
,
Toti
F
.
Cellular mechanisms underlying the formation of circulating microparticles
.
Arterioscler Thromb Vasc Biol
.
2011
;
31
(
1
):
15
-
26
.
9.
Aatonen
M
,
Grönholm
M
,
Siljander
PR
.
Platelet-derived microvesicles: multitalented participants in intercellular communication
.
Semin Thromb Hemost
.
2012
;
38
(
1
):
102
-
113
.
10.
Michael
JV
,
Wurtzel
JGT
,
Mao
GF
, et al
.
Platelet microparticles infiltrating solid tumors transfer miRNAs that suppress tumor growth
.
Blood
.
2017
;
130
(
5
):
567
-
580
.
11.
Millington-Burgess
SL
,
Harper
MT
.
Gene of the issue: ANO6 and Scott syndrome
.
Platelets
.
2019
;
31
(
7
):
964
-
967
.
12.
Lhermusier
T
,
Chap
H
,
Payrastre
B
.
Platelet membrane phospholipid asymmetry: from the characterization of a scramblase activity to the identification of an essential protein mutated in Scott syndrome
.
J Thromb Haemost
.
2011
;
9
(
10
):
1883
-
1891
.
13.
Satta
N
,
Toti
F
,
Fressinaud
E
,
Meyer
D
,
Freyssinet
JM
.
Scott syndrome: an inherited defect of the procoagulant activity of platelets
.
Platelets
.
1997
;
8
(
2-3
):
117
-
124
.
14.
Bricogne
C
,
Fine
M
,
Pereira
PM
, et al
.
TMEM16F activation by Ca2+ triggers plasma membrane expansion and directs PD-1 trafficking [published correction appears in Sci Rep. 2019;9(1):7705]
.
Sci Rep
.
2019
;
9
(
1
):
619
.
15.
Wanitchakool
P
,
Wolf
L
,
Koehl
GE
, et al
.
Role of anoctamins in cancer and apoptosis
.
Philos Trans R Soc Lond B Biol Sci
.
2014
;
369
(
1638
):
20130096
.
16.
Jacobsen
KS
,
Zeeberg
K
,
Sauter
DR
,
Poulsen
KA
,
Hoffmann
EK
,
Schwab
A
.
The role of TMEM16A (ANO1) and TMEM16F (ANO6) in cell migration
.
Pflugers Arch
.
2013
;
465
(
12
):
1753
-
1762
.
17.
Baig
AA
,
Haining
EJ
,
Geuss
E
, et al
.
TMEM16F-mediated platelet membrane phospholipid scrambling is critical for hemostasis and thrombosis but not thromboinflammation in mice-brief report
.
Arterioscler Thromb Vasc Biol
.
2016
;
36
(
11
):
2152
-
2157
.
18.
Gkolfinopoulos
S
,
Jones
RL
,
Constantinidou
A
.
The emerging role of platelets in the formation of the micrometastatic niche: current evidence and future perspectives
.
Front Oncol
.
2020
;
10
:
374
.
19.
Nieswandt
B
,
Hafner
M
,
Echtenacher
B
,
Männel
DN
.
Lysis of tumor cells by natural killer cells in mice is impeded by platelets
.
Cancer Res
.
1999
;
59
(
6
):
1295
-
1300
.
20.
Yan
M
,
Jurasz
P
.
The role of platelets in the tumor microenvironment: from solid tumors to leukemia
.
Biochim Biophys Acta
.
2016
;
1863
(
3
):
392
-
400
.
21.
Labelle
M
,
Begum
S
,
Hynes
RO
.
Platelets guide the formation of early metastatic niches
.
Proc Natl Acad Sci USA
.
2014
;
111
(
30
):
E3053
-
E3061
.
22.
Placke
T
,
Örgel
M
,
Schaller
M
, et al
.
Platelet-derived MHC class I confers a pseudonormal phenotype to cancer cells that subverts the antitumor reactivity of natural killer immune cells
.
Cancer Res
.
2012
;
72
(
2
):
440
-
448
.
23.
Labelle
M
,
Begum
S
,
Hynes
RO
.
Direct signaling between platelets and cancer cells induces an epithelial-mesenchymal-like transition and promotes metastasis
.
Cancer Cell
.
2011
;
20
(
5
):
576
-
590
.
24.
Goubran
HA
,
Kotb
RR
,
Stakiw
J
,
Emara
ME
,
Burnouf
T
.
Regulation of tumor growth and metastasis: the role of tumor microenvironment
.
Cancer Growth Metastasis
.
2014
;
7
:
9
-
18
.
25.
Montoro-García
S
,
Shantsila
E
,
Hernández-Romero
D
, et al
.
Small-size platelet microparticles trigger platelet and monocyte functionality and modulate thrombogenesis via P-selectin
.
Br J Haematol
.
2014
;
166
(
4
):
571
-
580
.
26.
Coupland
LA
,
Chong
BH
,
Parish
CR
.
Platelets and P-selectin control tumor cell metastasis in an organ-specific manner and independently of NK cells
.
Cancer Res
.
2012
;
72
(
18
):
4662
-
4671
.
27.
Chen
M
,
Geng
JG
.
P-selectin mediates adhesion of leukocytes, platelets, and cancer cells in inflammation, thrombosis, and cancer growth and metastasis
.
Arch Immunol Ther Exp (Warsz)
.
2006
;
54
(
2
):
75
-
84
.
28.
Schumacher
D
,
Strilic
B
,
Sivaraj
KK
,
Wettschureck
N
,
Offermanns
S
.
Platelet-derived nucleotides promote tumor-cell transendothelial migration and metastasis via P2Y2 receptor
.
Cancer Cell
.
2013
;
24
(
1
):
130
-
137
.
29.
Stanger
BZ
,
Kahn
ML
.
Platelets and tumor cells: a new form of border control
.
Cancer Cell
.
2013
;
24
(
1
):
9
-
11
.
30.
Campello
E
,
Spiezia
L
,
Radu
CM
, et al
.
Endothelial, platelet, and tissue factor-bearing microparticles in cancer patients with and without venous thromboembolism
.
Thromb Res
.
2011
;
127
(
5
):
473
-
477
.
31.
Baj-Krzyworzeka
M
,
Majka
M
,
Pratico
D
, et al
.
Platelet-derived microparticles stimulate proliferation, survival, adhesion, and chemotaxis of hematopoietic cells
.
Exp Hematol
.
2002
;
30
(
5
):
450
-
459
.
32.
Teicher
BA
,
Fricker
SP
.
CXCL12 (SDF-1)/CXCR4 pathway in cancer
.
Clin Cancer Res
.
2010
;
16
(
11
):
2927
-
2931
.
33.
Domanska
UM
,
Kruizinga
RC
,
Nagengast
WB
, et al
.
A review on CXCR4/CXCL12 axis in oncology: no place to hide
.
Eur J Cancer
.
2013
;
49
(
1
):
219
-
230
.
34.
Manoochehrabadi
T
,
Sharifi
Z
,
Yari
F
.
Role of platelet-derived microparticles in transfer of the chemokine receptor CXCR4 to CXCR4-negative cells
.
Med J Islam Repub Iran
.
2019
;
33
:
55
.
35.
Dashevsky
O
,
Varon
D
,
Brill
A
.
Platelet-derived microparticles promote invasiveness of prostate cancer cells via upregulation of MMP-2 production
.
Int J Cancer
.
2009
;
124
(
8
):
1773
-
1777
.
36.
Janowska-Wieczorek
A
,
Wysoczynski
M
,
Kijowski
J
, et al
.
Microvesicles derived from activated platelets induce metastasis and angiogenesis in lung cancer
.
Int J Cancer
.
2005
;
113
(
5
):
752
-
760
.
37.
Brill
A
,
Dashevsky
O
,
Rivo
J
,
Gozal
Y
,
Varon
D
.
Platelet-derived microparticles induce angiogenesis and stimulate post-ischemic revascularization
.
Cardiovasc Res
.
2005
;
67
(
1
):
30
-
38
.
38.
Kim
HK
,
Song
KS
,
Chung
JH
,
Lee
KR
,
Lee
SN
.
Platelet microparticles induce angiogenesis in vitro
.
Br J Haematol
.
2004
;
124
(
3
):
376
-
384
.
39.
Varon
D
,
Hayon
Y
,
Dashevsky
O
,
Shai
E
.
Involvement of platelet derived microparticles in tumor metastasis and tissue regeneration
.
Thromb Res
.
2012
;
130
(
suppl 1
):
S98
-
S99
.
40.
Varon
D
,
Shai
E
.
Platelets and their microparticles as key players in pathophysiological responses
.
J Thromb Haemost
.
2015
;
13
(
suppl 1
):
S40
-
S46
.
41.
Milasan
A
,
Tessandier
N
,
Tan
S
,
Brisson
A
,
Boilard
E
,
Martel
C
.
Extracellular vesicles are present in mouse lymph and their level differs in atherosclerosis
.
J Extracell Vesicles
.
2016
;
5
(
1
):
31427
.
42.
Tessandier
N
,
Melki
I
,
Cloutier
N
, et al
.
Platelets disseminate extracellular vesicles in lymph in rheumatoid arthritis
.
Arterioscler Thromb Vasc Biol
.
2020
;
40
(
4
):
929
-
942
.
43.
Hayon
Y
,
Dashevsky
O
,
Shai
E
,
Brill
A
,
Varon
D
,
Leker
RR
.
Platelet microparticles induce angiogenesis and neurogenesis after cerebral ischemia
.
Curr Neurovasc Res
.
2012
;
9
(
3
):
185
-
192
.
44.
Becker
RC
,
Sexton
T
,
Smyth
SS
.
Translational implications of platelets as vascular first responders
.
Circ Res
.
2018
;
122
(
3
):
506
-
522
.
45.
Muralidharan-Chari
V
,
Clancy
JW
,
Sedgwick
A
,
D’Souza-Schorey
C
.
Microvesicles: mediators of extracellular communication during cancer progression
.
J Cell Sci
.
2010
;
123
(
pt 10
):
1603
-
1611
.
46.
Jy
W
,
Mao
WW
,
Horstman
L
,
Tao
J
,
Ahn
YS
.
Platelet microparticles bind, activate and aggregate neutrophils in vitro
.
Blood Cells Mol Dis
.
1995
;
21
(
3
):
217
-
231, discussion 231a
.
47.
Lo
SC
,
Hung
CY
,
Lin
DT
,
Peng
HC
,
Huang
TF
.
Involvement of platelet glycoprotein Ib in platelet microparticle mediated neutrophil activation
.
J Biomed Sci
.
2006
;
13
(
6
):
787
-
796
.
48.
Salanova
B
,
Choi
M
,
Rolle
S
,
Wellner
M
,
Luft
FC
,
Kettritz
R
.
Beta2-integrins and acquired glycoprotein IIb/IIIa (GPIIb/IIIa) receptors cooperate in NF-kappaB activation of human neutrophils
.
J Biol Chem
.
2007
;
282
(
38
):
27960
-
27969
.
49.
Duchez
AC
,
Boudreau
LH
,
Naika
GS
, et al
.
Platelet microparticles are internalized in neutrophils via the concerted activity of 12-lipoxygenase and secreted phospholipase A2-IIA [published correction appears in Proc Natl Acad Sci USA. 2015;112(49):E6825]
.
Proc Natl Acad Sci USA
.
2015
;
112
(
27
):
E3564
-
E3573
.
50.
Forlow
SB
,
McEver
RP
,
Nollert
MU
.
Leukocyte-leukocyte interactions mediated by platelet microparticles under flow
.
Blood
.
2000
;
95
(
4
):
1317
-
1323
.
51.
Boilard
E
,
Nigrovic
PA
,
Larabee
K
, et al
.
Platelets amplify inflammation in arthritis via collagen-dependent microparticle production
.
Science
.
2010
;
327
(
5965
):
580
-
583
.
52.
McGregor
L
,
Martin
J
,
McGregor
JL
.
Platelet-leukocyte aggregates and derived microparticles in inflammation, vascular remodelling and thrombosis
.
Front Biosci
.
2006
;
11
(
1
):
830
-
837
.
53.
Sadallah
S
,
Eken
C
,
Martin
PJ
,
Schifferli
JA
.
Microparticles (ectosomes) shed by stored human platelets downregulate macrophages and modify the development of dendritic cells
.
J Immunol
.
2011
;
186
(
11
):
6543
-
6552
.
54.
Vasina
EM
,
Cauwenberghs
S
,
Feijge
MA
,
Heemskerk
JW
,
Weber
C
,
Koenen
RR
.
Microparticles from apoptotic platelets promote resident macrophage differentiation
.
Cell Death Dis
.
2011
;
2
(
9
):
e211
.
55.
Laffont
B
,
Corduan
A
,
Rousseau
M
, et al
.
Platelet microparticles reprogram macrophage gene expression and function
.
Thromb Haemost
.
2016
;
115
(
2
):
311
-
323
.
56.
Elyamany
G
,
Alzahrani
AM
,
Bukhary
E
.
Cancer-associated thrombosis: an overview
.
Clin Med Insights Oncol
.
2014
;
8
:
129
-
137
.
57.
Bucciarelli
P
,
Martinelli
I
,
Artoni
A
, et al
.
Circulating microparticles and risk of venous thromboembolism
.
Thromb Res
.
2012
;
129
(
5
):
591
-
597
.
58.
Hisada
Y
,
Mackman
N
.
Cancer-associated pathways and biomarkers of venous thrombosis
.
Blood
.
2017
;
130
(
13
):
1499
-
1506
.
59.
Mahajan
A
,
Wun
T
.
Biomarkers of cancer-associated thromboembolism
.
Cancer Treat Res
.
2019
;
179
:
69
-
85
.
60.
Yamanaka
Y
,
Sawai
Y
,
Nomura
S
.
Platelet-derived microparticles are an important biomarker in patients with cancer-associated thrombosis
.
Int J Gen Med
.
2019
;
12
:
491
-
497
.
61.
Chew
HK
,
Wun
T
,
Harvey
D
,
Zhou
H
,
White
RH
.
Incidence of venous thromboembolism and its effect on survival among patients with common cancers
.
Arch Intern Med
.
2006
;
166
(
4
):
458
-
464
.
62.
Mooberry
MJ
,
Key
NS
.
Microparticle analysis in disorders of hemostasis and thrombosis
.
Cytometry A
.
2016
;
89
(
2
):
111
-
122
.
63.
Zwicker
JI
,
Trenor
CC
III
,
Furie
BC
,
Furie
B
.
Tissue factor-bearing microparticles and thrombus formation
.
Arterioscler Thromb Vasc Biol
.
2011
;
31
(
4
):
728
-
733
.
64.
Sinauridze
EI
,
Kireev
DA
,
Popenko
NY
, et al
.
Platelet microparticle membranes have 50- to 100-fold higher specific procoagulant activity than activated platelets
.
Thromb Haemost
.
2007
;
97
(
3
):
425
-
434
.
65.
Tesselaar
ME
,
Romijn
FP
,
Van Der Linden
IK
,
Prins
FA
,
Bertina
RM
,
Osanto
S
.
Microparticle-associated tissue factor activity: a link between cancer and thrombosis?
J Thromb Haemost
.
2007
;
5
(
3
):
520
-
527
.
66.
Khorana
AA
,
Francis
CW
,
Menzies
KE
, et al
.
Plasma tissue factor may be predictive of venous thromboembolism in pancreatic cancer
.
J Thromb Haemost
.
2008
;
6
(
11
):
1983
-
1985
.
67.
Thaler
J
,
Ay
C
,
Mackman
N
, et al
.
Microparticle-associated tissue factor activity, venous thromboembolism and mortality in pancreatic, gastric, colorectal and brain cancer patients
.
J Thromb Haemost
.
2012
;
10
(
7
):
1363
-
1370
.
68.
Bharthuar
A
,
Khorana
AA
,
Hutson
A
, et al
.
Circulating microparticle tissue factor, thromboembolism and survival in pancreaticobiliary cancers
.
Thromb Res
.
2013
;
132
(
2
):
180
-
184
.
69.
Date
K
,
Hall
J
,
Greenman
J
,
Maraveyas
A
,
Madden
LA
.
Tumour and microparticle tissue factor expression and cancer thrombosis
.
Thromb Res
.
2013
;
131
(
2
):
109
-
115
.
70.
Geddings
JE
,
Mackman
N
.
Tumor-derived tissue factor-positive microparticles and venous thrombosis in cancer patients
.
Blood
.
2013
;
122
(
11
):
1873
-
1880
.
71.
Zwicker
JI
,
Liebman
HA
,
Neuberg
D
, et al
.
Tumor-derived tissue factor-bearing microparticles are associated with venous thromboembolic events in malignancy
.
Clin Cancer Res
.
2009
;
15
(
22
):
6830
-
6840
.
72.
Yates
KR
,
Welsh
J
,
Echrish
HH
,
Greenman
J
,
Maraveyas
A
,
Madden
LA
.
Pancreatic cancer cell and microparticle procoagulant surface characterization: involvement of membrane-expressed tissue factor, phosphatidylserine and phosphatidylethanolamine
.
Blood Coagul Fibrinolysis
.
2011
;
22
(
8
):
680
-
687
.
73.
Gerotziafas
GT
,
Galea
V
,
Mbemba
E
, et al
.
Tissue factor over-expression by human pancreatic cancer cells BXPC3 is related to higher prothrombotic potential as compared to breast cancer cells MCF7
.
Thromb Res
.
2012
;
129
(
6
):
779
-
786
.
74.
Wang
JG
,
Geddings
JE
,
Aleman
MM
, et al
.
Tumor-derived tissue factor activates coagulation and enhances thrombosis in a mouse xenograft model of human pancreatic cancer
.
Blood
.
2012
;
119
(
23
):
5543
-
5552
.
75.
Ansari
D
,
Ansari
D
,
Andersson
R
,
Andrén-Sandberg
Å
.
Pancreatic cancer and thromboembolic disease, 150 years after Trousseau
.
Hepatobiliary Surg Nutr
.
2015
;
4
(
5
):
325
-
335
.
76.
Nitori
N
,
Ino
Y
,
Nakanishi
Y
, et al
.
Prognostic significance of tissue factor in pancreatic ductal adenocarcinoma
.
Clin Cancer Res
.
2005
;
11
(
7
):
2531
-
2539
.
77.
Hernández
C
,
Orbe
J
,
Roncal
C
, et al
.
Tissue factor expressed by microparticles is associated with mortality but not with thrombosis in cancer patients
.
Thromb Haemost
.
2013
;
110
(
3
):
598
-
608
.
78.
Geddings
JE
,
Mackman
N
.
Comment on “tissue factor expressed by microparticles is associated with mortality but not with thrombosis in cancer patients”
.
Thromb Haemost
.
2014
;
111
(
1
):
180
-
181
.
79.
Zwicker
JI
,
Lacroix
R
,
Dignat-George
F
,
Furie
BC
,
Furie
B
.
Measurement of platelet microparticles
.
Methods Mol Biol
.
2012
;
788
:
127
-
139
.
80.
van Doormaal
F
,
Kleinjan
A
,
Berckmans
RJ
, et al
.
Coagulation activation and microparticle-associated coagulant activity in cancer patients. An exploratory prospective study
.
Thromb Haemost
.
2012
;
108
(
1
):
160
-
165
.
81.
Boilard
E
,
Duchez
AC
,
Brisson
A
.
The diversity of platelet microparticles
.
Curr Opin Hematol
.
2015
;
22
(
5
):
437
-
444
.
82.
Théry
C
,
Witwer
KW
,
Aikawa
E
, et al
.
Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines
.
J Extracell Vesicles
.
2018
;
7
(
1
):
1535750
.
83.
Rousseau
M
,
Belleannee
C
,
Duchez
AC
, et al
.
Detection and quantification of microparticles from different cellular lineages using flow cytometry. Evaluation of the impact of secreted phospholipase A2 on microparticle assessment
.
PLoS One
.
2015
;
10
(
1
):
e0116812
.
84.
Gardiner
C
,
Harrison
P
,
Belting
M
, et al
.
Extracellular vesicles, tissue factor, cancer and thrombosis – discussion themes of the ISEV 2014 Educational Day
.
J Extracell Vesicles
.
2015
;
4
(
1
):
26901
.
85.
van Es
N
,
Bleker
S
,
Sturk
A
,
Nieuwland
R
.
Clinical significance of tissue factor-exposing microparticles in arterial and venous thrombosis
.
Semin Thromb Hemost
.
2015
;
41
(
7
):
718
-
727
.
86.
Levi
M
.
Cancer and DIC
.
Haemostasis
.
2001
;
31
(
suppl 1
):
47
-
48
.
87.
Levi
M
.
Disseminated intravascular coagulation in cancer patients
.
Best Pract Res Clin Haematol
.
2009
;
22
(
1
):
129
-
136
.
88.
Levi
M
.
Disseminated intravascular coagulation in cancer: an update
.
Semin Thromb Hemost
.
2019
;
45
(
4
):
342
-
347
.
89.
Kleinjan
A
,
Böing
AN
,
Sturk
A
,
Nieuwland
R
.
Microparticles in vascular disorders: how tissue factor-exposing vesicles contribute to pathology and physiology
.
Thromb Res
.
2012
;
130
(
suppl 1
):
S71
-
S73
.
90.
Mantha
S
,
Tallman
MS
,
Soff
GA
.
What’s new in the pathogenesis of the coagulopathy in acute promyelocytic leukemia?
Curr Opin Hematol
.
2016
;
23
(
2
):
121
-
126
.
91.
Stein
E
,
McMahon
B
,
Kwaan
H
,
Altman
JK
,
Frankfurt
O
,
Tallman
MS
.
The coagulopathy of acute promyelocytic leukaemia revisited
.
Best Pract Res Clin Haematol
.
2009
;
22
(
1
):
153
-
163
.
92.
Mege
D
,
Mezouar
S
,
Dignat-George
F
,
Panicot-Dubois
L
,
Dubois
C
.
Microparticles and cancer thrombosis in animal models
.
Thromb Res
.
2016
;
140
(
suppl 1
):
S21
-
S26
.
93.
Lacroix
R
,
Dubois
C
,
Leroyer
AS
,
Sabatier
F
,
Dignat-George
F
.
Revisited role of microparticles in arterial and venous thrombosis
.
J Thromb Haemost
.
2013
;
11
(
suppl 1
):
24
-
35
.
94.
Tans
G
,
Rosing
J
,
Thomassen
MC
,
Heeb
MJ
,
Zwaal
RF
,
Griffin
JH
.
Comparison of anticoagulant and procoagulant activities of stimulated platelets and platelet-derived microparticles
.
Blood
.
1991
;
77
(
12
):
2641
-
2648
.
95.
Zwicker
JI
,
Liebman
HA
,
Bauer
KA
, et al
.
Prediction and prevention of thromboembolic events with enoxaparin in cancer patients with elevated tissue factor-bearing microparticles: a randomized-controlled phase II trial (the Microtec study)
.
Br J Haematol
.
2013
;
160
(
4
):
530
-
537
.
96.
Edelstein
LC
.
The role of platelet microvesicles in intercellular communication
.
Platelets
.
2017
;
28
(
3
):
222
-
227
.
97.
Ambrose
AR
,
Alsahli
MA
,
Kurmani
SA
,
Goodall
AH
.
Comparison of the release of microRNAs and extracellular vesicles from platelets in response to different agonists
.
Platelets
.
2018
;
29
(
5
):
446
-
454
.
98.
Plé
H
,
Landry
P
,
Benham
A
,
Coarfa
C
,
Gunaratne
PH
,
Provost
P
.
The repertoire and features of human platelet microRNAs
.
PLoS One
.
2012
;
7
(
12
):
e50746
.
99.
Laffont
B
,
Corduan
A
,
Plé
H
, et al
.
Activated platelets can deliver mRNA regulatory Ago2•microRNA complexes to endothelial cells via microparticles
.
Blood
.
2013
;
122
(
2
):
253
-
261
.
100.
Baeriswyl
V
,
Christofori
G
.
The angiogenic switch in carcinogenesis
.
Semin Cancer Biol
.
2009
;
19
(
5
):
329
-
337
.
101.
Anene
C
,
Graham
AM
,
Boyne
J
,
Roberts
W
.
Platelet microparticle delivered microRNA-Let-7a promotes the angiogenic switch
.
Biochim Biophys Acta Mol Basis Dis
.
2018
;
1864
(
8
):
2633
-
2643
.
102.
Zhang
Y
,
Zhang
W
,
Zha
C
,
Liu
Y
.
Platelets activated by the anti-β2GPI/β2GPI complex release microRNAs to inhibit migration and tube formation of human umbilical vein endothelial cells
.
Cell Mol Biol Lett
.
2018
;
23
(
1
):
24
.
103.
Kailashiya
J
,
Gupta
V
,
Dash
D
.
Engineered human platelet-derived microparticles as natural vectors for targeted drug delivery
.
Oncotarget
.
2019
;
10
(
56
):
5835
-
5846
.
104.
Xia
L
,
Zeng
Z
,
Tang
WH
.
The role of platelet microparticle associated microRNAs in cellular crosstalk
.
Front Cardiovasc Med
.
2018
;
5
:
29
.
105.
Tran
JQD
,
Pedersen
OH
,
Larsen
ML
, et al
.
Platelet microRNA expression and association with platelet maturity and function in patients with essential thrombocythemia
.
Platelets
.
2020
;
31
(
3
):
365
-
372
.
106.
Sol
N
,
Wurdinger
T
.
Platelet RNA signatures for the detection of cancer
.
Cancer Metastasis Rev
.
2017
;
36
(
2
):
263
-
272
.
107.
Boilard
E
.
Extracellular vesicles and their content in bioactive lipid mediators: more than a sack of microRNA
.
J Lipid Res
.
2018
;
59
(
11
):
2037
-
2046
.
108.
Marcoux
G
,
Duchez
AC
,
Cloutier
N
,
Provost
P
,
Nigrovic
PA
,
Boilard
E
.
Revealing the diversity of extracellular vesicles using high-dimensional flow cytometry analyses
.
Sci Rep
.
2016
;
6
(
1
):
35928
.
109.
Tan
AS
,
Baty
JW
,
Dong
LF
, et al
.
Mitochondrial genome acquisition restores respiratory function and tumorigenic potential of cancer cells without mitochondrial DNA
.
Cell Metab
.
2015
;
21
(
1
):
81
-
94
.
110.
Berridge
MV
,
Crasso
C
,
Neuzil
J
.
Mitochondrial genome transfer to tumor cells breaks the rules and establishes a new precedent in cancer biology
.
Mol Cell Oncol
.
2018
;
5
(
5
):
e1023929
.
111.
Yao
B
,
Qu
S
,
Hu
R
, et al
.
Delivery of platelet TPM3 mRNA into breast cancer cells via microvesicles enhances metastasis
.
FEBS Open Bio
.
2019
;
9
(
12
):
2159
-
2169
.
112.
Simon
LM
,
Edelstein
LC
,
Nagalla
S
, et al
.
Human platelet microRNA-mRNA networks associated with age and gender revealed by integrated plateletomics
.
Blood
.
2014
;
123
(
16
):
e37
-
e45
.
113.
Denis
MM
,
Tolley
ND
,
Bunting
M
, et al
.
Escaping the nuclear confines: signal-dependent pre-mRNA splicing in anucleate platelets
.
Cell
.
2005
;
122
(
3
):
379
-
391
.
114.
Zhang
W
,
Qi
J
,
Zhao
S
, et al
.
Clinical significance of circulating microparticles in Ph myeloproliferative neoplasms
.
Oncol Lett
.
2017
;
14
(
2
):
2531
-
2536
.
115.
Aswad
MH
,
Kissová
J
,
Rihova
L
,
Zavrelova
J
,
Ovesná
P
,
Penka
M
.
High level of circulating microparticles in patients with BCR/ABL negative myeloproliferative neoplasm – a pilot study
.
Klin Onkol
.
2019
;
32
(
2
):
109
-
116
.
116.
Ren
JG
,
Man
QW
,
Zhang
W
, et al
.
Elevated level of circulating platelet-derived microparticles in oral cancer
.
J Dent Res
.
2016
;
95
(
1
):
87
-
93
.
117.
Dymicka-Piekarska
V
,
Gryko
M
,
Alina
L
,
Korniluk
A
,
Siergiejko
E
,
Kemona
H
.
Platelet-derived microparticles in patients with colorectal cancer
.
J Cancer Ther
.
2012
;
3
(
6
):
898
-
901
.
118.
Chaari
M
,
Ayadi
I
,
Rousseau
A
, et al
.
Impact of breast cancer stage, time from diagnosis and chemotherapy on plasma and cellular biomarkers of hypercoagulability
.
BMC Cancer
.
2014
;
14
(
1
):
991
.
119.
Garcia-Albeniz
X
,
Chan
AT
.
Aspirin for the prevention of colorectal cancer
.
Best Pract Res Clin Gastroenterol
.
2011
;
25
(
4-5
):
461
-
472
.
120.
Drew
DA
,
Cao
Y
,
Chan
AT
.
Aspirin and colorectal cancer: the promise of precision chemoprevention
.
Nat Rev Cancer
.
2016
;
16
(
3
):
173
-
186
.
121.
Bibbins-Domingo
K
;
U.S. Preventive Services Task Force
.
Aspirin use for the primary prevention of cardiovascular disease and colorectal cancer: U.S. preventive services task force recommendation statement
.
Ann Intern Med
.
2016
;
164
(
12
):
836
-
845
.
122.
Giacomazzi
A
,
Degan
M
,
Calabria
S
,
Meneguzzi
A
,
Minuz
P
.
Antiplatelet agents inhibit the generation of platelet-derived microparticles
.
Front Pharmacol
.
2016
;
7
:
314
.
123.
Xu
XR
,
Yousef
GM
,
Ni
H
.
Cancer and platelet crosstalk: opportunities and challenges for aspirin and other antiplatelet agents
.
Blood
.
2018
;
131
(
16
):
1777
-
1789
.
124.
Lichtenberger
LM
,
Vijayan
KV
.
Are platelets the primary target of aspirin’s remarkable anticancer activity?
Cancer Res
.
2019
;
79
(
15
):
3820
-
3823
.
125.
Kuter
DJ
.
Managing thrombocytopenia associated with cancer chemotherapy
.
Oncology (Williston Park)
.
2015
;
29
(
4
):
282
-
294
.
126.
Fujii
T
,
Sakata
A
,
Nishimura
S
,
Eto
K
,
Nagata
S
.
TMEM16F is required for phosphatidylserine exposure and microparticle release in activated mouse platelets
.
Proc Natl Acad Sci USA
.
2015
;
112
(
41
):
12800
-
12805
.
You do not currently have access to this content.

Sign in via your Institution

Sign In