Key Points

  • Fully human BCMA-targeting CAR exerted safety and efficacy in patients with RRMM.

  • Patients who relapsed from prior murine BCMA CAR T-cell therapy may still benefit from CT103A.

Abstract

B-cell maturation antigen (BCMA)-specific chimeric antigen receptor (CAR) T-cell therapies have shown efficacy in relapsed/refractory multiple myeloma (RRMM). Because the non-human originated antigen-targeting domain may limit clinical efficacy, we developed a fully human BCMA-specific CAR, CT103A, and report its safety and efficacy in a phase 1 trial. Eighteen consecutive patients with RRMM, including 4 with prior murine BCMA CAR exposures, were enrolled. CT103A was administered at 1, 3, and 6 × 106 CAR-positive T cells/kg in the dose-escalation phase, and 1 × 106 CAR-positive T cells/kg in the expansion cohort. The overall response rate was 100%, with 72.2% of the patients achieving complete response or stringent complete response. For the 4 murine BCMA CAR–exposed patients, 3 achieved stringent complete response, and 1 achieved a very good partial response. At 1 year, the progression-free survival rate was 58.3% for all cohorts and 79.1% for the patients without extramedullary myeloma. Hematologic toxicities were the most common adverse events; 70.6% of the patients experienced grade 1 or 2 cytokine release syndromes. No immune effector cell–associated neurotoxicity syndrome was observed. To the cutoff date, CAR transgenes were detectable in 77.8% of the patients. The median CAR transgene persistence was 307.5 days. Only 1 patient was positive for the anti-drug antibody. Altogether, CT103A is safe and highly active in patients with RRMM and can be developed as a promising therapy for RRMM. Patients who relapsed from prior murine BCMA CAR T-cell therapy may still benefit from CT103A. This trial was registered at http://www.chictr.org.cn as #ChiCTR1800018137.

REFERENCES

1.
Kumar
SK
,
Dispenzieri
A
,
Lacy
MQ
, et al
.
Continued improvement in survival in multiple myeloma: changes in early mortality and outcomes in older patients
.
Leukemia
.
2014
;
28
(
5
):
1122
-
1128
.
2.
Chim
CS
,
Kumar
SK
,
Orlowski
RZ
, et al
.
Management of relapsed and refractory multiple myeloma: novel agents, antibodies, immunotherapies and beyond
.
Leukemia
.
2018
;
32
(
2
):
252
-
262
.
3.
Cho
SF
,
Anderson
KC
,
Tai
YT
,
Targeting
B
.
Targeting B cell maturation antigen (BCMA) in multiple myeloma: potential uses of BCMA-based immunotherapy
.
Front Immunol
.
2018
;
9
:
1821
.
4.
Goldschmidt
H
,
Ashcroft
J
,
Szabo
Z
,
Garderet
L
.
Navigating the treatment landscape in multiple myeloma: which combinations to use and when?
Ann Hematol
.
2019
;
98
(
1
):
1
-
18
.
5.
Ali
SA
,
Shi
V
,
Maric
I
, et al
.
T cells expressing an anti-B-cell maturation antigen chimeric antigen receptor cause remissions of multiple myeloma
.
Blood
.
2016
;
128
(
13
):
1688
-
1700
.
6.
Xu
J
,
Wang
Q
,
Xu
H
, et al
.
Anti-BCMA CAR-T cells for treatment of plasma cell dyscrasia: case report on POEMS syndrome and multiple myeloma
.
J Hematol Oncol
.
2018
;
11
(
1
):
128
.
7.
Zhao
WH
,
Liu
J
,
Wang
BY
, et al
.
A phase 1, open-label study of LCAR-B38M, a chimeric antigen receptor T cell therapy directed against B cell maturation antigen, in patients with relapsed or refractory multiple myeloma
.
J Hematol Oncol
.
2018
;
11
(
1
):
141
.
8.
Brudno
JN
,
Maric
I
,
Hartman
SD
, et al
.
T cells genetically modified to express an anti-B-cell maturation antigen chimeric antigen receptor cause remissions of poor-prognosis relapsed multiple myeloma
.
J Clin Oncol
.
2018
;
36
(
22
):
2267
-
2280
.
9.
Raje
N
,
Berdeja
J
,
Lin
Y
, et al
.
Anti-BCMA CAR T-cell therapy bb2121 in relapsed or refractory multiple myeloma
.
N Engl J Med
.
2019
;
380
(
18
):
1726
-
1737
.
10.
Xu
J
,
Chen
LJ
,
Yang
SS
, et al
.
Exploratory trial of a biepitopic CAR T-targeting B cell maturation antigen in relapsed/refractory multiple myeloma
.
Proc Natl Acad Sci U S A
.
2019
;
116
(
19
):
9543
-
9551
.
11.
Cohen
AD
,
Garfall
AL
,
Stadtmauer
EA
, et al
.
B cell maturation antigen-specific CAR T cells are clinically active in multiple myeloma
.
J Clin Invest
.
2019
;
129
(
6
):
2210
-
2221
.
12.
Shah
NN
,
Fry
TJ
.
Mechanisms of resistance to CAR T cell therapy
.
Nat Rev Clin Oncol
.
2019
;
16
(
6
):
372
-
385
.
13.
Sun
M
,
Shi
H
,
Liu
C
,
Liu
J
,
Liu
X
,
Sun
Y
.
Construction and evaluation of a novel humanized HER2-specific chimeric receptor
.
Breast Cancer Res
.
2014
;
16
(
3
):
R61
.
14.
Johnson
LA
,
Scholler
J
,
Ohkuri
T
, et al
.
Rational development and characterization of humanized anti-EGFR variant III chimeric antigen receptor T cells for glioblastoma
.
Sci Transl Med
.
2015
;
7
(
275
):
275ra22
.
15.
Lanitis
E
,
Poussin
M
,
Hagemann
IS
, et al
.
Redirected antitumor activity of primary human lymphocytes transduced with a fully human anti-mesothelin chimeric receptor
.
Mol Ther
.
2012
;
20
(
3
):
633
-
643
.
16.
Alonso-Camino
V
,
Sánchez-Martín
D
,
Compte
M
, et al
.
CARbodies: human antibodies against cell surface tumor antigens selected from repertoires displayed on T cell chimeric antigen receptors
.
Mol Ther Nucleic Acids
.
2013
;
2
:
e93
.
17.
Sommermeyer
D
,
Hill
T
,
Shamah
SM
, et al
.
Fully human CD19-specific chimeric antigen receptors for T-cell therapy
.
Leukemia
.
2017
;
31
(
10
):
2191
-
2199
.
18.
Lam
N
,
Trinklein
ND
,
Buelow
B
,
Patterson
GH
,
Ojha
N
,
Kochenderfer
JN
.
Anti-BCMA chimeric antigen receptors with fully human heavy-chain-only antigen recognition domains [published correction appears in Nat Commun. 2020;11(1):1319]
.
Nat Commun
.
2020
;
11
(
1
):
283
.
19.
Rajkumar
SV
,
Dimopoulos
MA
,
Palumbo
A
, et al
.
International Myeloma Working Group updated criteria for the diagnosis of multiple myeloma
.
Lancet Oncol
.
2014
;
15
(
12
):
e538
-
e548
.
20.
Oken
MM
,
Creech
RH
,
Tormey
DC
, et al
.
Toxicity and response criteria of the Eastern Cooperative Oncology Group
.
Am J Clin Oncol
.
1982
;
5
(
6
):
649
-
655
.
21.
Moxness
M
,
Tatarewicz
S
,
Weeraratne
D
, et al
.
Immunogenicity testing by electrochemiluminescent detection for antibodies directed against therapeutic human monoclonal antibodies
.
Clin Chem
.
2005
;
51
(
10
):
1983
-
1985
.
22.
Aarden
L
,
Ruuls
SR
,
Wolbink
G
.
Immunogenicity of anti-tumor necrosis factor antibodies-toward improved methods of anti-antibody measurement
.
Curr Opin Immunol
.
2008
;
20
(
4
):
431
-
435
.
23.
Lee
DW
,
Santomasso
BD
,
Locke
FL
, et al
.
ASTCT consensus grading for cytokine release syndrome and neurologic toxicity associated with immune effector cells
.
Biol Blood Marrow Transplant
.
2019
;
25
(
4
):
625
-
638
.
24.
Kumar
S
,
Paiva
B
,
Anderson
KC
, et al
.
International Myeloma Working Group consensus criteria for response and minimal residual disease assessment in multiple myeloma
.
Lancet Oncol
.
2016
;
17
(
8
):
e328
-
e346
.
25.
Lou
Y
,
Chen
C
,
Long
X
, et al
.
Detection and quantification of chimeric antigen receptor transgene copy number by droplet digital PCR versus real-time PCR
.
J Mol Diagn
.
2020
;
22
(
5
):
699
-
707
.
26.
Bhutani
M
,
Foureau
DM
,
Atrash
S
,
Voorhees
PM
,
Usmani
SZ
.
Extramedullary multiple myeloma
.
Leukemia
.
2020
;
34
(
1
):
1
-
20
.
27.
Gorovits
B
,
Koren
E
.
Immunogenicity of chimeric antigen receptor T-cell therapeutics
.
BioDrugs
.
2019
;
33
(
3
):
275
-
284
.
28.
Berdeja
JG
,
Madduri
D
,
Usmani
SZ
, et al
.
Update of CARTITUDE-1: a phase 1b/2 study of JNJ-68284528 (JNJ-4528), a B-cell maturation antigen (BCMA)-directed chimeric antigen receptor T (CAR-T) cell therapy, in relapsed/refractory multiple myeloma (MM)
.
Hematol Transfus Cell Ther
.
2020
;
42
:
279
-
280
.
29.
Lu
J
,
Lu
J
,
Chen
W
,
Huo
Y
,
Huang
X
,
Hou
J
;
Chinese Medical Doctor Association Hematology Branch
.
Clinical features and treatment outcome in newly diagnosed Chinese patients with multiple myeloma: results of a multicenter analysis
.
Blood Cancer J
.
2014
;
4
(
8
):
e239
.
30.
Xu
LP
,
Wu
DP
,
Han
MZ
, et al
.
A review of hematopoietic cell transplantation in China: data and trends during 2008-2016
.
Bone Marrow Transplant
.
2017
;
52
(
11
):
1512
-
1518
.
31.
Turtle
CJ
,
Hanafi
LA
,
Berger
C
, et al
.
CD19 CAR-T cells of defined CD4+:CD8+ composition in adult B cell ALL patients
.
J Clin Invest
.
2016
;
126
(
6
):
2123
-
2138
.
32.
Turtle
CJ
,
Hanafi
LA
,
Berger
C
, et al
.
Immunotherapy of non-Hodgkin’s lymphoma with a defined ratio of CD8+ and CD4+ CD19-specific chimeric antigen receptor-modified T cells
.
Sci Transl Med
.
2016
;
8
(
355
):
355ra116
.
33.
Lamers
CH
,
Willemsen
R
,
van Elzakker
P
, et al
.
Immune responses to transgene and retroviral vector in patients treated with ex vivo-engineered T cells
.
Blood
.
2011
;
117
(
1
):
72
-
82
.
34.
Maus
MV
,
Haas
AR
,
Beatty
GL
, et al
.
T cells expressing chimeric antigen receptors can cause anaphylaxis in humans
.
Cancer Immunol Res
.
2013
;
1
(
1
):
26
-
31
.
35.
Maude
SL
,
Frey
N
,
Shaw
PA
, et al
.
Chimeric antigen receptor T cells for sustained remissions in leukemia
.
N Engl J Med
.
2014
;
371
(
16
):
1507
-
1517
.
36.
Lee
DW
,
Kochenderfer
JN
,
Stetler-Stevenson
M
, et al
.
T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial
.
Lancet
.
2015
;
385
(
9967
):
517
-
528
.
37.
Gardner
RA
,
Finney
O
,
Annesley
C
, et al
.
Intent-to-treat leukemia remission by CD19 CAR T cells of defined formulation and dose in children and young adults
.
Blood
.
2017
;
129
(
25
):
3322
-
3331
.
38.
Jensen
MC
,
Popplewell
L
,
Cooper
LJ
, et al
.
Antitransgene rejection responses contribute to attenuated persistence of adoptively transferred CD20/CD19-specific chimeric antigen receptor redirected T cells in humans
.
Biol Blood Marrow Transplant
.
2010
;
16
(
9
):
1245
-
1256
.
39.
Mueller
KT
,
Waldron
E
,
Grupp
SA
, et al
.
Clinical pharmacology of tisagenlecleucel in B-cell acute lymphoblastic leukemia
.
Clin Cancer Res
.
2018
;
24
(
24
):
6175
-
6184
.
40.
Sotillo
E
,
Barrett
DM
,
Black
KL
, et al
.
Convergence of acquired mutations and alternative splicing of CD19 enables resistance to CART-19 immunotherapy
.
Cancer Discov
.
2015
;
5
(
12
):
1282
-
1295
.
41.
Orlando
EJ
,
Han
X
,
Tribouley
C
, et al
.
Genetic mechanisms of target antigen loss in CAR19 therapy of acute lymphoblastic leukemia
.
Nat Med
.
2018
;
24
(
10
):
1504
-
1506
.
42.
Gardner
R
,
Wu
D
,
Cherian
S
, et al
.
Acquisition of a CD19-negative myeloid phenotype allows immune escape of MLL-rearranged B-ALL from CD19 CAR-T-cell therapy
.
Blood
.
2016
;
127
(
20
):
2406
-
2410
.
43.
Hamieh
M
,
Dobrin
A
,
Cabriolu
A
, et al
.
CAR T cell trogocytosis and cooperative killing regulate tumour antigen escape
.
Nature
.
2019
;
568
(
7750
):
112
-
116
.
44.
Zhao
Z
,
Condomines
M
,
van der Stegen
SJC
, et al
.
Structural design of engineered costimulation determines tumor rejection kinetics and persistence of CAR T cells
.
Cancer Cell
.
2015
;
28
(
4
):
415
-
428
.
45.
Cao
J
,
Wang
G
,
Cheng
H
, et al
.
Potent anti-leukemia activities of humanized CD19-targeted chimeric antigen receptor T (CAR-T) cells in patients with relapsed/refractory acute lymphoblastic leukemia
.
Am J Hematol
.
2018
;
93
(
7
):
851
-
858
.
46.
Guha
P
,
Cunetta
M
,
Somasundar
P
,
Espat
NJ
,
Junghans
RP
,
Katz
SC
.
Frontline science: functionally impaired geriatric CAR-T cells rescued by increased α5β1 integrin expression
.
J Leukoc Biol
.
2017
;
102
(
2
):
201
-
208
.
47.
Catakovic
K
,
Klieser
E
,
Neureiter
D
,
Geisberger
R
.
T cell exhaustion: from pathophysiological basics to tumor immunotherapy
.
Cell Commun Signal
.
2017
;
15
(
1
):
1
.
48.
Santomasso
BD
,
Park
JH
,
Salloum
D
, et al
.
Clinical and biological correlates of neurotoxicity associated with CAR T-cell therapy in patients with B-cell acute lymphoblastic leukemia
.
Cancer Discov
.
2018
;
8
(
8
):
958
-
971
.
49.
Neelapu
SS
,
Tummala
S
,
Kebriaei
P
, et al
.
Chimeric antigen receptor T-cell therapy—assessment and management of toxicities
.
Nat Rev Clin Oncol
.
2018
;
15
(
1
):
47
-
62
.
You do not currently have access to this content.

Sign in via your Institution

Sign In