Key Points

  • Progression signature identified from in vivo disease modeling revealed clinical relevance in MM.

Abstract

Clonal evolution drives tumor progression, dissemination, and relapse in multiple myeloma (MM), with most patients dying of relapsed disease. This multistage process requires tumor cells to enter the circulation, extravasate, and colonize distant bone marrow (BM) sites. Here, we developed a fluorescent or DNA-barcode clone-tracking system on MM PrEDiCT (progression through evolution and dissemination of clonal tumor cells) xenograft mouse model to study clonal behavior within the BM microenvironment. We showed that only the few clones that successfully adapt to the BM microenvironment can enter the circulation and colonize distant BM sites. RNA sequencing of primary and distant-site MM tumor cells revealed a progression signature sequentially activated along human MM progression and significantly associated with overall survival when evaluated against patient data sets. A total of 28 genes were then computationally predicted to be master regulators (MRs) of MM progression. HMGA1 and PA2G4 were validated in vivo using CRISPR-Cas9 in the PrEDiCT model and were shown to be significantly depleted in distant BM sites, indicating their role in MM progression and dissemination. Loss of HMGA1 and PA2G4 also compromised the proliferation, migration, and adhesion abilities of MM cells in vitro. Overall, our model successfully recapitulates key characteristics of human MM disease progression and identified potential new therapeutic targets for MM.

REFERENCES

1.
Greaves
M
,
Maley
CC
.
Clonal evolution in cancer
.
Nature
.
2012
;
481
(
7381
):
306
-
313
.
2.
Nowell
PC
.
The clonal evolution of tumor cell populations
.
Science
.
1976
;
194
(
4260
):
23
-
28
.
3.
Stratton
MR
.
Exploring the genomes of cancer cells: progress and promise
.
Science
.
2011
;
331
(
6024
):
1553
-
1558
.
4.
Merlo
LM
,
Pepper
JW
,
Reid
BJ
,
Maley
CC
.
Cancer as an evolutionary and ecological process
.
Nat Rev Cancer
.
2006
;
6
(
12
):
924
-
935
.
5.
Aparicio
S
,
Caldas
C
.
The implications of clonal genome evolution for cancer medicine
.
N Engl J Med
.
2013
;
368
(
9
):
842
-
851
.
6.
Klein
CA
.
Parallel progression of primary tumours and metastases
.
Nat Rev Cancer
.
2009
;
9
(
4
):
302
-
312
.
7.
Palumbo
A
,
Anderson
K
.
Multiple myeloma
.
N Engl J Med
.
2011
;
364
(
11
):
1046
-
1060
.
8.
Manier
S
,
Salem
KZ
,
Park
J
,
Landau
DA
,
Getz
G
,
Ghobrial
IM
.
Genomic complexity of multiple myeloma and its clinical implications
.
Nat Rev Clin Oncol
.
2017
;
14
(
2
):
100
-
113
.
9.
Corre
J
,
Munshi
N
,
Avet-Loiseau
H
.
Genetics of multiple myeloma: another heterogeneity level?
Blood
.
2015
;
125
(
12
):
1870
-
1876
.
10.
Szalat
R
,
Munshi
NC
.
Genomic heterogeneity in multiple myeloma [published correction appears in Curr Opin Genet Dev. 2016;37:158]
.
Curr Opin Genet Dev
.
2015
;
30
:
56
-
65
.
11.
Weiss
BM
,
Abadie
J
,
Verma
P
,
Howard
RS
,
Kuehl
WM
.
A monoclonal gammopathy precedes multiple myeloma in most patients
.
Blood
.
2009
;
113
(
22
):
5418
-
5422
.
12.
van Nieuwenhuijzen
N
,
Spaan
I
,
Raymakers
R
,
Peperzak
V
.
From MGUS to multiple myeloma, a paradigm for clonal evolution of premalignant cells
.
Cancer Res
.
2018
;
78
(
10
):
2449
-
2456
.
13.
Pawlyn
C
,
Morgan
GJ
.
Evolutionary biology of high-risk multiple myeloma
.
Nat Rev Cancer
.
2017
;
17
(
9
):
543
-
556
.
14.
Chapman
MA
,
Lawrence
MS
,
Keats
JJ
, et al
.
Initial genome sequencing and analysis of multiple myeloma
.
Nature
.
2011
;
471
(
7339
):
467
-
472
.
15.
Lathia
JD
,
Heddleston
JM
,
Venere
M
,
Rich
JN
.
Deadly teamwork: neural cancer stem cells and the tumor microenvironment
.
Cell Stem Cell
.
2011
;
8
(
5
):
482
-
485
.
16.
Plaks
V
,
Kong
N
,
Werb
Z
.
The cancer stem cell niche: how essential is the niche in regulating stemness of tumor cells?
Cell Stem Cell
.
2015
;
16
(
3
):
225
-
238
.
17.
Poltavets
V
,
Kochetkova
M
,
Pitson
SM
,
Samuel
MS
.
The role of the extracellular matrix and its molecular and cellular regulators in cancer cell plasticity
.
Front Oncol
.
2018
;
8
:
431
.
18.
Oudin
MJ
,
Jonas
O
,
Kosciuk
T
, et al
.
Tumor cell-driven extracellular matrix remodeling drives haptotaxis during metastatic progression
.
Cancer Discov
.
2016
;
6
(
5
):
516
-
531
.
19.
Bray
NL
,
Pimentel
H
,
Melsted
P
,
Pachter
L
.
Near-optimal probabilistic RNA-seq quantification [published correction appears in Nat Biotechnol. 2016;34:888]
.
Nat Biotechnol
.
2016
;
34
(
5
):
525
-
527
.
20.
Love
MI
,
Huber
W
,
Anders
S
.
Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2
.
Genome Biol
.
2014
;
15
(
12
):
550
.
21.
Yu
VWC
,
Yusuf
RZ
,
Oki
T
, et al
.
Epigenetic memory underlies cell-autonomous heterogeneous behavior of hematopoietic stem cells [published correction appears in Cell. 2017;168:944-945]
.
Cell
.
2016
;
167
(5):
1310
-
1322 e1317
.
22.
Gerrits
A
,
Dykstra
B
,
Kalmykowa
OJ
, et al
.
Cellular barcoding tool for clonal analysis in the hematopoietic system
.
Blood
.
2010
;
115
(
13
):
2610
-
2618
.
23.
Massagué
J
,
Obenauf
AC
.
Metastatic colonization by circulating tumour cells
.
Nature
.
2016
;
529
(
7586
):
298
-
306
.
24.
Fares
J
,
Fares
MY
,
Khachfe
HH
,
Salhab
HA
,
Fares
Y
.
Molecular principles of metastasis: a hallmark of cancer revisited
.
Signal Transduct Target Ther
.
2020
;
5
(
1
):
28
.
25.
Gupta
GP
,
Massagué
J
.
Cancer metastasis: building a framework
.
Cell
.
2006
;
127
(
4
):
679
-
695
.
26.
Chng
WJ
,
Kumar
S
,
Vanwier
S
, et al
.
Molecular dissection of hyperdiploid multiple myeloma by gene expression profiling
.
Cancer Res
.
2007
;
67
(
7
):
2982
-
2989
.
27.
Shi
L
,
Campbell
G
,
Jones
WD
, et al;
MAQC Consortium
.
The MicroArray Quality Control (MAQC)-II study of common practices for the development and validation of microarray-based predictive models
.
Nat Biotechnol
.
2010
;
28
(
8
):
827
-
838
.
28.
Alvarez
MJ
,
Shen
Y
,
Giorgi
FM
, et al
.
Functional characterization of somatic mutations in cancer using network-based inference of protein activity
.
Nat Genet
.
2016
;
48
(
8
):
838
-
847
.
29.
Lachmann
A
,
Giorgi
FM
,
Lopez
G
,
Califano
A
.
ARACNe-AP: gene network reverse engineering through adaptive partitioning inference of mutual information
.
Bioinformatics
.
2016
;
32
(
14
):
2233
-
2235
.
30.
Tsherniak
A
,
Vazquez
F
,
Montgomery
PG
, et al
.
Defining a cancer dependency map
.
Cell
.
2017
;
170
(3):
564
-
576.e516
.
31.
Misund
K
,
Keane
N
,
Stein
CK
, et al;
MMRF CoMMpass Network
.
MYC dysregulation in the progression of multiple myeloma
.
Leukemia
.
2020
;
34
(
1
):
322
-
326
.
32.
Jovanović
KK
,
Roche-Lestienne
C
,
Ghobrial
IM
,
Facon
T
,
Quesnel
B
,
Manier
S
.
Targeting MYC in multiple myeloma
.
Leukemia
.
2018
;
32
(
6
):
1295
-
1306
.
33.
Shaffer
AL
,
Emre
NC
,
Lamy
L
, et al
.
IRF4 addiction in multiple myeloma
.
Nature
.
2008
;
454
(
7201
):
226
-
231
.
34.
Shah
V
,
Boyd
KD
,
Houlston
RS
,
Kaiser
MF
.
Constitutional mutation in CDKN2A is associated with long term survivorship in multiple myeloma: a case report
.
BMC Cancer
.
2017
;
17
(
1
):
718
.
35.
Dilworth
D
,
Liu
L
,
Stewart
AK
,
Berenson
JR
,
Lassam
N
,
Hogg
D
.
Germline CDKN2A mutation implicated in predisposition to multiple myeloma
.
Blood
.
2000
;
95
(
5
):
1869
-
1871
.
36.
Kryukov
F
,
Dementyeva
E
,
Kubiczkova
L
, et al
.
Cell cycle genes co-expression in multiple myeloma and plasma cell leukemia
.
Genomics
.
2013
;
102
(
4
):
243
-
249
.
37.
Kuiper
R
,
Broyl
A
,
de Knegt
Y
, et al
.
A gene expression signature for high-risk multiple myeloma [published correction appears in Leukemia. 2014;28:1178-1180]
.
Leukemia
.
2012
;
26
(
11
):
2406
-
2413
.
38.
Huang
W
,
Cao
Z
,
Zeng
L
, et al
.
nm23, TOP2A and VEGF expression: potential prognostic biologic factors in peripheral T-cell lymphoma, not otherwise specified
.
Oncol Lett
.
2019
;
18
(
4
):
3803
-
3810
.
39.
Zeid
R
,
Lawlor
MA
,
Poon
E
, et al
.
Enhancer invasion shapes MYCN-dependent transcriptional amplification in neuroblastoma
.
Nat Genet
.
2018
;
50
(
4
):
515
-
523
.
40.
Li
W
,
Xu
H
,
Xiao
T
, et al
.
MAGeCK enables robust identification of essential genes from genome-scale CRISPR/Cas9 knockout screens
.
Genome Biol
.
2014
;
15
(
12
):
554
.
41.
Rosean
TR
,
Tompkins
VS
,
Tricot
G
, et al
.
Preclinical validation of interleukin 6 as a therapeutic target in multiple myeloma
.
Immunol Res
.
2014
;
59
(
1-3
):
188
-
202
.
42.
Gadó
K
,
Domján
G
,
Hegyesi
H
,
Falus
A
.
Role of INTERLEUKIN-6 in the pathogenesis of multiple myeloma
.
Cell Biol Int
.
2000
;
24
(
4
):
195
-
209
.
43.
Gunn
WG
,
Conley
A
,
Deininger
L
,
Olson
SD
,
Prockop
DJ
,
Gregory
CA
.
A crosstalk between myeloma cells and marrow stromal cells stimulates production of DKK1 and interleukin-6: a potential role in the development of lytic bone disease and tumor progression in multiple myeloma
.
Stem Cells
.
2006
;
24
(
4
):
986
-
991
.
44.
Lohr
JG
,
Stojanov
P
,
Carter
SL
, et al;
Multiple Myeloma Research Consortium
.
Widespread genetic heterogeneity in multiple myeloma: implications for targeted therapy
.
Cancer Cell
.
2014
;
25
(
1
):
91
-
101
.
45.
Wei
X
,
Calvo-Vidal
MN
,
Chen
S
, et al
.
Germline lysine-specific demethylase 1 (LSD1/KDM1A) mutations confer susceptibility to multiple myeloma
.
Cancer Res
.
2018
;
78
(
10
):
2747
-
2759
.
46.
Valkenburg
KC
,
de Groot
AE
,
Pienta
KJ
.
Targeting the tumour stroma to improve cancer therapy
.
Nat Rev Clin Oncol
.
2018
;
15
(
6
):
366
-
381
.
47.
Valastyan
S
,
Weinberg
RA
.
Tumor metastasis: molecular insights and evolving paradigms
.
Cell
.
2011
;
147
(
2
):
275
-
292
.
48.
Lambert
AW
,
Pattabiraman
DR
,
Weinberg
RA
.
Emerging biological principles of metastasis
.
Cell
.
2017
;
168
(
4
):
670
-
691
.
49.
Roodman
GD
.
Role of the bone marrow microenvironment in multiple myeloma
.
J Bone Miner Res
.
2002
;
17
(
11
):
1921
-
1925
.
50.
Psaila
B
,
Lyden
D
.
The metastatic niche: adapting the foreign soil
.
Nat Rev Cancer
.
2009
;
9
(
4
):
285
-
293
.
51.
Lawson
MA
,
McDonald
MM
,
Kovacic
N
, et al
.
Osteoclasts control reactivation of dormant myeloma cells by remodelling the endosteal niche
.
Nat Commun
.
2015
;
6
:
8983
.
52.
Khoo
WH
,
Ledergor
G
,
Weiner
A
, et al
.
A niche-dependent myeloid transcriptome signature defines dormant myeloma cells
.
Blood
.
2019
;
134
(
1
):
30
-
43
.
53.
Hewett
DR
,
Vandyke
K
,
Lawrence
DM
, et al
.
DNA barcoding reveals habitual clonal dominance of myeloma plasma cells in the bone marrow microenvironment
.
Neoplasia
.
2017
;
19
(
12
):
972
-
981
.
54.
Fu
F
,
Wang
T
,
Wu
Z
, et al
.
HMGA1 exacerbates tumor growth through regulating the cell cycle and accelerates migration/invasion via targeting miR-221/222 in cervical cancer
.
Cell Death Dis
.
2018
;
9
(
6
):
594
.
55.
Santuario-Facio
SK
,
Cardona-Huerta
S
,
Perez-Paramo
YX
, et al
.
A new gene expression signature for triple negative breast cancer using frozen fresh tissue before neoadjuvant chemotherapy
.
Mol Med
.
2017
;
23
(
1
):
101
-
111
.
56.
Andreozzi
M
,
Quintavalle
C
,
Benz
D
, et al
.
HMGA1 expression in human hepatocellular carcinoma correlates with poor prognosis and promotes tumor growth and migration in in vitro models [published correction appears in Neoplasia. 2020;22(7):272-273]
.
Neoplasia
.
2016
;
18
(
12
):
724
-
731
.
57.
Méndez
O
,
Peg
V
,
Salvans
C
, et al
.
Extracellular HMGA1 promotes tumor invasion and metastasis in triple-negative breast cancer
.
Clin Cancer Res
.
2018
;
24
(
24
):
6367
-
6382
.
58.
Sgarra
R
,
Pegoraro
S
,
Ros
G
, et al
.
High mobility group A (HMGA) proteins: molecular instigators of breast cancer onset and progression
.
Biochim Biophys Acta Rev Cancer
.
2018
;
1869
(
2
):
216
-
229
.
59.
Toyozumi
T
,
Hoshino
I
,
Takahashi
M
, et al
.
Fra-1 regulates the expression of HMGA1, which is associated with a poor prognosis in human esophageal squamous cell carcinoma
.
Ann Surg Oncol
.
2017
;
24
(
11
):
3446
-
3455
.
60.
Zhong
J
,
Liu
C
,
Chen
YJ
, et al
.
The association between S100A13 and HMGA1 in the modulation of thyroid cancer proliferation and invasion
.
J Transl Med
.
2016
;
14
(
1
):
80
.
61.
Xia
X
,
Cheng
A
,
Lessor
T
,
Zhang
Y
,
Hamburger
AW
.
Ebp1, an ErbB-3 binding protein, interacts with Rb and affects Rb transcriptional regulation
.
J Cell Physiol
.
2001
;
187
(
2
):
209
-
217
.
62.
Nguyen
XT
,
Zhu
L
,
Lee
Y
,
Ta
L
,
Mitchell
BS
.
Expression and role of the ErbB3-binding protein 1 in acute myelogenous leukemic cells
.
Clin Cancer Res
.
2016
;
22
(
13
):
3320
-
3327
.
63.
Yoo
JY
,
Wang
XW
,
Rishi
AK
, et al
.
Interaction of the PA2G4 (EBP1) protein with ErbB-3 and regulation of this binding by heregulin
.
Br J Cancer
.
2000
;
82
(
3
):
683
-
690
.
64.
Zhang
Y
,
Linn
D
,
Liu
Z
, et al
.
EBP1, an ErbB3-binding protein, is decreased in prostate cancer and implicated in hormone resistance
.
Mol Cancer Ther
.
2008
;
7
(
10
):
3176
-
3186
.
65.
Zhan
F
,
Barlogie
B
,
Arzoumanian
V
, et al
.
Gene-expression signature of benign monoclonal gammopathy evident in multiple myeloma is linked to good prognosis
.
Blood
.
2007
;
109
(
4
):
1692
-
1700
.
66.
Hanahan
D
,
Weinberg
RA
.
Hallmarks of cancer: the next generation
.
Cell
.
2011
;
144
(
5
):
646
-
674
.
67.
Hanahan
D
,
Weinberg
RA
.
The hallmarks of cancer
.
Cell
.
2000
;
100
(
1
):
57
-
70
.
68.
Ren
X
,
Kang
B
,
Zhang
Z
.
Understanding tumor ecosystems by single-cell sequencing: promises and limitations
.
Genome Biol
.
2018
;
19
(
1
):
211
.
69.
Amend
SR
,
Roy
S
,
Brown
JS
,
Pienta
KJ
.
Ecological paradigms to understand the dynamics of metastasis
.
Cancer Lett
.
2016
;
380
(
1
):
237
-
242
.
70.
Maley
CC
,
Aktipis
A
,
Graham
TA
, et al
.
Classifying the evolutionary and ecological features of neoplasms
.
Nat Rev Cancer
.
2017
;
17
(
10
):
605
-
619
.
You do not currently have access to this content.

Sign in via your Institution

Sign In