Key Points

  • The combination of Cy conditioning and IL-2 allows suppressive T cells to rescue scurfy mice after disease onset.

  • Transcriptomic analysis reveals a lasting restoration of Treg identity in FOXP3-transduced scurfy cells, even in an inflammatory environment.

Abstract

Immunodysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX) syndrome is caused by mutations in forkhead box P3 (FOXP3), which lead to the loss of function of regulatory T cells (Tregs) and the development of autoimmune manifestations early in life. The selective induction of a Treg program in autologous CD4+ T cells by FOXP3 gene transfer is a promising approach for curing IPEX. We have established a novel in vivo assay of Treg functionality, based on adoptive transfer of these cells into scurfy mice (an animal model of IPEX) and a combination of cyclophosphamide (Cy) conditioning and interleukin-2 (IL-2) treatment. This model highlighted the possibility of rescuing scurfy disease after the latter’s onset. By using this in vivo model and an optimized lentiviral vector expressing human Foxp3 and, as a reporter, a truncated form of the low-affinity nerve growth factor receptor (ΔLNGFR), we demonstrated that the adoptive transfer of FOXP3-transduced scurfy CD4+ T cells enabled the long-term rescue of scurfy autoimmune disease. The efficiency was similar to that seen with wild-type Tregs. After in vivo expansion, the converted CD4FOXP3 cells recapitulated the transcriptomic core signature for Tregs. These findings demonstrate that FOXP3 expression converts CD4+ T cells into functional Tregs capable of controlling severe autoimmune disease.

REFERENCES

1.
Wildin
RS
,
Ramsdell
F
,
Peake
J
, et al
.
X-linked neonatal diabetes mellitus, enteropathy and endocrinopathy syndrome is the human equivalent of mouse scurfy
.
Nat Genet
.
2001
;
27
(
1
):
18
-
20
.
2.
Bennett
CL
,
Christie
J
,
Ramsdell
F
, et al
.
The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3
.
Nat Genet
.
2001
;
27
(
1
):
20
-
21
.
3.
Fontenot
JD
,
Gavin
MA
,
Rudensky
AY
,
Hughes
H
.
Foxp3 programs the development and function of CD4+CD25+ regulatory T cells
.
Nat Immunol
.
2003
;
4
(
4
):
330
-
336
.
4.
Hori
S
,
Nomura
T
,
Sakaguchi
S
.
Control of regulatory T cell development by the transcription factor Foxp3
.
Science
.
2003
;
299
(
5609
):
1057
-
1061
.
5.
Khattri
R
,
Cox
T
,
Yasayko
S-A
,
Ramsdell
F
.
An essential role for Scurfin in CD4+CD25+ T regulatory cells
.
Nat Immunol
.
2003
;
4
(
4
):
337
-
342
.
6.
Barzaghi
F
,
Amaya Hernandez
LC
,
Neven
B
, et al;
Primary Immune Deficiency Treatment Consortium (PIDTC) and the Inborn Errors Working Party (IEWP) of the European Society for Blood and Marrow Transplantation (EBMT)
.
Long-term follow-up of IPEX syndrome patients after different therapeutic strategies: an international multicenter retrospective study
.
J Allergy Clin Immunol
.
2018
;
141
(
3
):
1036
-
1049.e5
.
7.
Kasow
KA
,
Morales-Tirado
VM
,
Wichlan
D
, et al
.
Therapeutic in vivo selection of thymic-derived natural T regulatory cells following non-myeloablative hematopoietic stem cell transplant for IPEX
.
Clin Immunol
.
2011
;
141
(
2
):
169
-
176
.
8.
Seidel
MG
,
Fritsch
G
,
Lion
T
, et al
.
Selective engraftment of donor CD4+25high FOXP3-positive T cells in IPEX syndrome after nonmyeloablative hematopoietic stem cell transplantation
.
Blood
.
2009
;
113
(
22
):
5689
-
5691
.
9.
Horino
S
,
Sasahara
Y
,
Sato
M
, et al
.
Selective expansion of donor-derived regulatory T cells after allogeneic bone marrow transplantation in a patient with IPEX syndrome
.
Pediatr Transplant
.
2014
;
18
(
1
):
E25
-
E30
.
10.
Godfrey
VL
,
Wilkinson
JE
,
Russell
LB
.
X-linked lymphoreticular disease in the scurfy (sf) mutant mouse
.
Am J Pathol
.
1991
;
138
(
6
):
1379
-
1387
.
11.
Haribhai
D
,
Williams
JB
,
Jia
S
, et al
.
A requisite role for induced regulatory T cells in tolerance based on expanding antigen receptor diversity
.
Immunity
.
2011
;
35
(
1
):
109
-
122
.
12.
Kalos
M
,
June
CH
.
Adoptive T cell transfer for cancer immunotherapy in the era of synthetic biology
.
Immunity
.
2013
;
39
(
1
):
49
-
60
.
13.
June
CH
,
Sadelain
M
.
Chimeric antigen receptor therapy
.
N Engl J Med
.
2018
;
379
(
1
):
64
-
73
.
14.
Passerini
L
,
Rossi Mel
E
,
Sartirana
C
, et al
.
CD4+ T cells from IPEX patients convert into functional and stable regulatory T cells by FOXP3 gene transfer
.
Sci Transl Med
.
2013
;
5
(
215
):
215ra174
.
15.
Fu
W
,
Ergun
A
,
Lu
T
, et al
.
A multiply redundant genetic switch “locks in” the transcriptional signature of regulatory T cells
.
Nat Immunol
.
2012
;
13
(
10
):
972
-
980
.
16.
Delville
M
,
Soheili
T
,
Bellier
F
, et al
.
A nontoxic transduction enhancer enables highly efficient lentiviral transduction of primary murine T cells and hematopoietic stem cells
.
Mol Ther Methods Clin Dev
.
2018
;
10
:
341
-
347
.
17.
Picelli
S
,
Björklund
ÅK
,
Faridani
OR
,
Sagasser
S
,
Winberg
G
,
Sandberg
R
.
Smart-seq2 for sensitive full-length transcriptome profiling in single cells
.
Nat Methods
.
2013
;
10
(
11
):
1096
-
1098
.
18.
Picelli
S
,
Faridani
OR
,
Björklund
ÅK
,
Winberg
G
,
Sagasser
S
,
Sandberg
R
.
Full-length RNA-seq from single cells using Smart-seq2
.
Nat Protoc
.
2014
;
9
(
1
):
171
-
181
.
19.
Trapnell
C
,
Roberts
A
,
Goff
L
, et al
.
Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks
.
Nat Protoc
.
2012
;
7
:
562
-
578
.
20.
Chen
C
,
Liu
Y
,
Liu
Y
,
Zheng
P
.
Mammalian target of rapamycin activation underlies HSC defects in autoimmune disease and inflammation in mice
.
J Clin Invest
.
2010
;
120
(
11
):
4091
-
4101
.
21.
Serreze
DV
,
Hamaguchi
K
,
Leiter
EH
.
Immunostimulation circumvents diabetes in NOD/Lt mice
.
J Autoimmun
.
1989
;
2
(
6
):
759
-
776
.
22.
Tang
Q
,
Adams
JY
,
Penaranda
C
, et al
.
Central role of defective interleukin-2 production in the triggering of islet autoimmune destruction
.
Immunity
.
2008
;
28
(
5
):
687
-
697
.
23.
Grinberg-Bleyer
Y
,
Baeyens
A
,
You
S
, et al
.
IL-2 reverses established type 1 diabetes in NOD mice by a local effect on pancreatic regulatory T cells
.
J Exp Med
.
2010
;
207
(
9
):
1871
-
1878
.
24.
Hill
JA
,
Feuerer
M
,
Tash
K
, et al
.
Foxp3 transcription-factor-dependent and -independent regulation of the regulatory T cell transcriptional signature
.
Immunity
.
2007
;
27
(
5
):
786
-
800
.
25.
Zemmour
D
,
Zilionis
R
,
Kiner
E
,
Klein
AM
,
Mathis
D
,
Benoist
C
.
Single-cell gene expression reveals a landscape of regulatory T cell phenotypes shaped by the TCR [published correction appears in Nat Immunol. 2018;19(6):645]
.
Nat Immunol
.
2018
;
19
(
3
):
291
-
301
.
26.
Huter
EN
,
Punkosdy
GA
,
Glass
DD
,
Cheng
LI
,
Ward
JM
,
Shevach
EM
.
TGF-β-induced Foxp3+ regulatory T cells rescue scurfy mice
.
Eur J Immunol
.
2008
;
38
(
7
):
1814
-
1821
.
27.
Huyan
X-H
,
Lin
Y-P
,
Gao
T
,
Chen
R-Y
,
Fan
Y-M
.
Immunosuppressive effect of cyclophosphamide on white blood cells and lymphocyte subpopulations from peripheral blood of Balb/c mice
.
Int Immunopharmacol
.
2011
;
11
(
9
):
1293
-
1297
.
28.
Salem
ML
,
Al-Khami
AA
,
El-Nagaar
SA
, et al
.
Kinetics of rebounding of lymphoid and myeloid cells in mouse peripheral blood, spleen and bone marrow after treatment with cyclophosphamide
.
Cell Immunol
.
2012
;
276
(
1-2
):
67
-
74
.
29.
Zhang
H
,
Chua
KS
,
Guimond
M
, et al
.
Lymphopenia and interleukin-2 therapy alter homeostasis of CD4+CD25+ regulatory T cells
.
Nat Med
.
2005
;
11
(
11
):
1238
-
1243
.
30.
Wachsmuth
LP
,
Patterson
MT
,
Eckhaus
MA
,
Venzon
DJ
,
Gress
RE
,
Kanakry
CG
.
Post-transplantation cyclophosphamide prevents graft-versus-host disease by inducing alloreactive T cell dysfunction and suppression
.
J Clin Invest
.
2019
;
129
(
6
):
2357
-
2373
.
31.
Hulme
MA
,
Wasserfall
CH
,
Atkinson
MA
,
Brusko
TM
.
Central role for interleukin-2 in type 1 diabetes
.
Diabetes
.
2012
;
61
(
1
):
14
-
22
.
32.
von Spee-Mayer
C
,
Siegert
E
,
Abdirama
D
, et al
.
Low-dose interleukin-2 selectively corrects regulatory T cell defects in patients with systemic lupus erythematosus
.
Ann Rheum Dis
.
2016
;
75
(
7
):
1407
-
1415
.
33.
Saadoun
D
,
Rosenzwajg
M
,
Joly
F
, et al
.
Regulatory T-cell responses to low-dose interleukin-2 in HCV-induced vasculitis
.
N Engl J Med
.
2011
;
365
(
22
):
2067
-
2077
.
34.
Rosenzwajg
M
,
Lorenzon
R
,
Cacoub
P
, et al
.
Immunological and clinical effects of low-dose interleukin-2 across 11 autoimmune diseases in a single, open clinical trial
.
Ann Rheum Dis
.
2019
;
78
(
2
):
209
-
217
.
35.
Mahmoudpour
SH
,
Jankowski
M
,
Valerio
L
, et al
.
Safety of low-dose subcutaneous recombinant interleukin-2: systematic review and meta-analysis of randomized controlled trials
.
Sci Rep
.
2019
;
9
(
1
):
7145
.
36.
Koreth
J
,
Matsuoka
K
,
Kim
HT
, et al
.
Interleukin-2 and regulatory T cells in graft-versus-host disease
.
N Engl J Med
.
2011
;
365
(
22
):
2055
-
2066
.
37.
Betts
BC
,
Pidala
J
,
Kim
J
, et al
.
IL-2 promotes early Treg reconstitution after allogeneic hematopoietic cell transplantation
.
Haematologica
.
2017
;
102
(
5
):
948
-
957
.
38.
Zemmour
D
,
Charbonnier
L-M
,
Leon
J
, et al
.
Single cell analysis of FOXP3 deficiencies in humans and mice unmasks intrinsic and extrinsic CD4+ T cell perturbations [published online ahead of print 6 July 2020]
.
bioRxiv
.
doi:10.1101/2020.07.06.189589
.
39.
Masiuk
KE
,
Laborada
J
,
Roncarolo
MG
,
Hollis
RP
,
Kohn
DB
.
Lentiviral gene therapy in HSCs restores lineage-specific Foxp3 expression and suppresses autoimmunity in a mouse model of IPEX syndrome
.
Cell Stem Cell
.
2019
;
24
(
2
):
309
-
317.e7
.
40.
Goodwin
M
,
Lee
E
,
Lakshmanan
U
, et al
.
CRISPR-based gene editing enables FOXP3 gene repair in IPEX patient cells
.
Sci Adv
.
2020
;
6
(
19
):
eaaz0571
.
You do not currently have access to this content.

Sign in via your Institution

Sign In