Key Points

  • When SMEs are abundant in RBC concentrates, transfusion recovery is diminished.

  • SMEs are rapidly cleared after transfusion predominantly through spleen- and macrophage-related mechanisms.

Abstract

Permanent availability of red blood cells (RBCs) for transfusion depends on refrigerated storage, during which morphologically altered RBCs accumulate. Among these, a subpopulation of small RBCs, comprising type III echinocytes, spheroechinocytes, and spherocytes and defined as storage-induced microerythrocytes (SMEs), could be rapidly cleared from circulation posttransfusion. We quantified the proportion of SMEs in RBC concentrates from healthy human volunteers and assessed correlation with transfusion recovery, investigated the fate of SMEs upon perfusion through human spleen ex vivo, and explored where and how SMEs are cleared in a mouse model of blood storage and transfusion. In healthy human volunteers, high proportion of SMEs in long-stored RBC concentrates correlated with poor transfusion recovery. When perfused through human spleen, 15% and 61% of long-stored RBCs and SMEs were cleared in 70 minutes, respectively. High initial proportion of SMEs also correlated with high retention of RBCs by perfused human spleen. In the mouse model, SMEs accumulated during storage. Transfusion of long-stored RBCs resulted in reduced posttransfusion recovery, mostly due to SME clearance. After transfusion in mice, long-stored RBCs accumulated predominantly in spleen and were ingested mainly by splenic and hepatic macrophages. In macrophage-depleted mice, splenic accumulation and SME clearance were delayed, and transfusion recovery was improved. In healthy hosts, SMEs were cleared predominantly by macrophages in spleen and liver. When this well-demarcated subpopulation of altered RBCs was abundant in RBC concentrates, transfusion recovery was diminished. SME quantification has the potential to improve blood product quality assessment. This trial was registered at www.clinicaltrials.gov as #NCT02889133.

REFERENCES

1.
Lacroix
J
,
Hébert
PC
,
Fergusson
DA
, et al;
Canadian Critical Care Trials Group
.
Age of transfused blood in critically ill adults
.
N Engl J Med
.
2015
;
372
(
15
):
1410
-
1418
.
2.
Dhabangi
A
,
Ainomugisha
B
,
Cserti-Gazdewich
C
, et al
.
Effect of transfusion of red blood cells with longer vs shorter storage duration on elevated blood lactate levels in children with severe anemia: the TOTAL randomized clinical trial
.
JAMA
.
2015
;
314
(
23
):
2514
-
2523
.
3.
Steiner
ME
,
Ness
PM
,
Assmann
SF
, et al
.
Effects of red-cell storage duration on patients undergoing cardiac surgery
.
N Engl J Med
.
2015
;
372
(
15
):
1419
-
1429
.
4.
Cooper
DJ
,
McQuilten
ZK
,
Nichol
A
, et al;
TRANSFUSE Investigators and the Australian and New Zealand Intensive Care Society Clinical Trials Group
.
Age of red cells for transfusion and outcomes in critically ill adults
.
N Engl J Med
.
2017
;
377
(
19
):
1858
-
1867
.
5.
Heddle
NM
,
Cook
RJ
,
Arnold
DM
, et al
.
Effect of short-term vs. long-term blood storage on mortality after transfusion
.
N Engl J Med
.
2016
;
375
(
20
):
1937
-
1945
.
6.
McQuilten
ZK
,
French
CJ
,
Nichol
A
,
Higgins
A
,
Cooper
DJ
.
Effect of age of red cells for transfusion on patient outcomes: a systematic review and meta-analysis [published correction appears in Transfus Med Rev. 2020;34(2):138-139]
.
Transfus Med Rev
.
2018
;
32
(
2
):
77
-
88
.
7.
Chai-Adisaksopha
C
,
Alexander
PE
,
Guyatt
G
, et al
.
Mortality outcomes in patients transfused with fresher versus older red blood cells: a meta-analysis
.
Vox Sang
.
2017
;
112
(
3
):
268
-
278
.
8.
Cook
RJ
,
Heddle
NM
,
Lee
K-A
, et al
.
Red blood cell storage and in-hospital mortality: a secondary analysis of the INFORM randomised controlled trial
.
Lancet Haematol
.
2017
;
4
(
11
):
e544
-
e552
.
9.
Cartotto
R
,
Taylor
SL
,
Holmes
JH
IV
, et al
.
The effects of storage age of blood in massively transfused burn patients: a secondary analysis of the randomized transfusion requirement in burn care evaluation study
.
Crit Care Med
.
2018
;
46
(
12
):
e1097
-
e1104
.
10.
Jones
AR
,
Patel
RP
,
Marques
MB
, et al;
PROPPR Study Group
.
Older blood is associated with increased mortality and adverse events in massively transfused trauma patients: secondary analysis of the PROPPR trial
.
Ann Emerg Med
.
2019
;
73
(
6
):
650
-
661
.
11.
Högman
CF
,
Meryman
HT
.
Storage parameters affecting red blood cell survival and function after transfusion
.
Transfus Med Rev
.
1999
;
13
(
4
):
275
-
296
.
12.
Högman
CF
,
Meryman
HT
.
Red blood cells intended for transfusion: quality criteria revisited
.
Transfusion
.
2006
;
46
(
1
):
137
-
142
.
13.
Greenwalt
TJ
.
The how and why of exocytic vesicles
.
Transfusion
.
2006
;
46
(
1
):
143
-
152
.
14.
D’Alessandro
A
,
Kriebardis
AG
,
Rinalducci
S
, et al
.
An update on red blood cell storage lesions, as gleaned through biochemistry and omics technologies
.
Transfusion
.
2015
;
55
(
1
):
205
-
219
.
15.
Yoshida
T
,
Prudent
M
,
D’alessandro
A
.
Red blood cell storage lesion: causes and potential clinical consequences
.
Blood Transfus
.
2019
;
17
(
1
):
27
-
52
.
16.
Hess
JR
,
Greenwalt
TG
.
Storage of red blood cells: new approaches
.
Transfus Med Rev
.
2002
;
16
(
4
):
283
-
295
.
17.
Luten
M
,
Roerdinkholder-Stoelwinder
B
,
Schaap
NPM
,
de Grip
WJ
,
Bos
HJ
,
Bosman
GJ
.
Survival of red blood cells after transfusion: a comparison between red cells concentrates of different storage periods
.
Transfusion
.
2008
;
48
(
7
):
1478
-
1485
.
18.
Dern
RJ
,
Gwinn
RP
,
Wiorkowski
JJ
.
Studies on the preservation of human blood. I. Variability in erythrocyte storage characteristics among healthy donors
.
J Lab Clin Med
.
1966
;
67
(
6
):
955
-
965
.
19.
Hess
JR
,
Sparrow
RL
,
van der Meer
PF
,
Acker
JP
,
Cardigan
RA
,
Devine
DV
.
Red blood cell hemolysis during blood bank storage: using national quality management data to answer basic scientific questions
.
Transfusion
.
2009
;
49
(
12
):
2599
-
2603
.
20.
Dumont
LJ
,
AuBuchon
JP
.
Evaluation of proposed FDA criteria for the evaluation of radiolabeled red cell recovery trials
.
Transfusion
.
2008
;
48
(
6
):
1053
-
1060
.
21.
Prudent
M
,
Tissot
J-D
,
Lion
N
.
In vitro assays and clinical trials in red blood cell aging: lost in translation
.
Transfus Apheresis Sci
.
2015
;
52
(
3
):
270
-
276
.
22.
Bardyn
M
,
Rappaz
B
,
Jaferzadeh
K
, et al
.
Red blood cells ageing markers: a multi-parametric analysis
.
Blood Transfus
.
2017
;
15
(
3
):
239
-
248
.
23.
Rapido
F
,
Brittenham
GM
,
Bandyopadhyay
S
, et al
.
Prolonged red cell storage before transfusion increases extravascular hemolysis
.
J Clin Invest
.
2017
;
127
(
1
):
375
-
382
.
24.
Rydén
J
,
Clements
M
,
Hellström-Lindberg
E
,
Höglund
P
,
Edgren
G
.
A longer duration of red blood cell storage is associated with a lower hemoglobin increase after blood transfusion: a cohort study
.
Transfusion
.
2019
;
59
(
6
):
1945
-
1952
.
25.
Hunsicker
O
,
Hessler
K
,
Krannich
A
, et al
.
Duration of storage influences the hemoglobin rising effect of red blood cells in patients undergoing major abdominal surgery
.
Transfusion
.
2018
;
58
(
8
):
1870
-
1880
.
26.
Roubinian
NH
,
Plimier
C
,
Woo
JP
, et al
.
Effect of donor, component, and recipient characteristics on hemoglobin increments following red blood cell transfusion
.
Blood
.
2019
;
134
(
13
):
1003
-
1013
.
27.
Hess
JR
;
Biomedical Excellence for Safer Transfusion (BEST) Collaborative
.
Scientific problems in the regulation of red blood cell products
.
Transfusion
.
2012
;
52
(
8
):
1827
-
1835
.
28.
Ashby
W
.
The determination of the length of life of transfused blood corpuscles in man
.
J Exp Med
.
1919
;
29
(
3
):
267
-
281
.
29.
Haradin
AR
,
Weed
RI
,
Reed
CF
.
Changes in physical properties of stored erythrocytes relationship to survival in vivo
.
Transfusion
.
1969
;
9
(
5
):
229
-
237
.
30.
Högman
CF
,
de Verdier
CH
,
Ericson
A
,
Hedlund
K
,
Sandhagen
B
.
Studies on the mechanism of human red cell loss of viability during storage at +4 degrees C in vitro. I. Cell shape and total adenylate concentration as determinant factors for posttransfusion survival
.
Vox Sang
.
1985
;
48
(
5
):
257
-
268
.
31.
Szymanski
IO
,
Valeri
CR
,
McCallum
LE
,
Emerson
CP
,
Rosenfield
RE
.
Automated differential agglutination technic to measure red cell survival. I. Methodology
.
Transfusion
.
1968
;
8
(
2
):
65
-
73
.
32.
Gabrio
BW
,
Donohue
DM
,
Finch
CA
.
Erythrocyte preservation. V. Relationship between chemical changes and viability of stored blood treated with adenosine
.
J Clin Invest
.
1955
;
34
(
10
):
1509
-
1512
.
33.
Valeri
CR
,
Pivacek
LE
,
Palter
M
, et al
.
A clinical experience with ADSOL preserved erythrocytes
.
Surg Gynecol Obstet
.
1988
;
166
(
1
):
33
-
46
.
34.
Heaton
WA
,
Holme
S
,
Smith
K
, et al
.
Effects of 3-5 log10 pre-storage leucocyte depletion on red cell storage and metabolism
.
Br J Haematol
.
1994
;
87
(
2
):
363
-
368
.
35.
Reid
TJ
,
Babcock
JG
,
Derse-Anthony
CP
,
Hill
HR
,
Lippert
LE
,
Hess
JR
.
The viability of autologous human red cells stored in additive solution 5 and exposed to 25 degrees C for 24 hours
.
Transfusion
.
1999
;
39
(
9
):
991
-
997
.
36.
Roussel
C
,
Dussiot
M
,
Marin
M
, et al
.
Spherocytic shift of red blood cells during storage provides a quantitative whole cell-based marker of the storage lesion
.
Transfusion
.
2017
;
57
(
4
):
1007
-
1018
.
37.
Lutz
HU
,
Liu
SC
,
Palek
J
.
Release of spectrin-free vesicles from human erythrocytes during ATP depletion. I. Characterization of spectrin-free vesicles
.
J Cell Biol
.
1977
;
73
(
3
):
548
-
560
.
38.
Greenwalt
TJ
,
Zehner Sostok
C
,
Dumaswala
UJ
.
Studies in red blood cell preservation. 2. Comparison of vesicle formation, morphology, and membrane lipids during storage in AS-1 and CPDA-1
.
Vox Sang
.
1990
;
58
(
2
):
90
-
93
.
39.
Kriebardis
AG
,
Antonelou
MH
,
Stamoulis
KE
,
Economou-Petersen
E
,
Margaritis
LH
,
Papassideri
IS
.
RBC-derived vesicles during storage: ultrastructure, protein composition, oxidation, and signaling components
.
Transfusion
.
2008
;
48
(
9
):
1943
-
1953
.
40.
Safeukui
I
,
Buffet
PA
,
Deplaine
G
, et al
.
Quantitative assessment of sensing and sequestration of spherocytic erythrocytes by the human spleen
.
Blood
.
2012
;
120
(
2
):
424
-
430
.
41.
Moroff
G
,
Sohmer
PR
,
Button
LN
.
Proposed standardization of methods for determining the 24-hour survival of stored red cells
.
Transfusion
.
1984
;
24
(
2
):
109
-
114
.
42.
Bitan
ZC
,
Zhou
A
,
McMahon
DJ
, et al
.
Donor Iron Deficiency Study (DIDS): protocol of a study to test whether iron deficiency in blood donors affects red blood cell recovery after transfusion
.
Blood Transfus
.
2019
;
17
(
4
):
274
-
280
.
43.
Buffet
PA
,
Milon
G
,
Brousse
V
, et al
.
Ex vivo perfusion of human spleens maintains clearing and processing functions
.
Blood
.
2006
;
107
(
9
):
3745
-
3752
.
44.
Fischer
D
,
Büssow
J
,
Meybohm
P
,
Zacharowski
K
,
Jennewein
C
.
Novel method to leukoreduce murine blood for transfusion: how to reduce animal usage
.
Transfusion
.
2016
;
56
(
1
):
146
-
152
.
45.
Bessis
M
.
Red cell shapes. An illustrated classification and its rationale
.
Nouv Rev Fr Hematol
.
1972
;
12
(
6
):
721
-
745
.
46.
Berezina
TL
,
Zaets
SB
,
Morgan
C
, et al
.
Influence of storage on red blood cell rheological properties
.
J Surg Res
.
2002
;
102
(
1
):
6
-
12
.
47.
D’Alessandro
A
,
D’Amici
GM
,
Vaglio
S
,
Zolla
L
.
Time-course investigation of SAGM-stored leukocyte-filtered red bood cell concentrates: from metabolism to proteomics
.
Haematologica
.
2012
;
97
(
1
):
107
-
115
.
48.
Blasi
B
,
D’Alessandro
A
,
Ramundo
N
,
Zolla
L
.
Red blood cell storage and cell morphology
.
Transfus Med
.
2012
;
22
(
2
):
90
-
96
.
49.
D’Alessandro
A
,
Gray
AD
,
Szczepiorkowski
ZM
,
Hansen
K
,
Herschel
LH
,
Dumont
LJ
.
Red blood cell metabolic responses to refrigerated storage, rejuvenation, and frozen storage
.
Transfusion
.
2017
;
57
(
4
):
1019
-
1030
.
50.
Roussel
C
,
Monnier
S
,
Dussiot
M
, et al
.
Fluorescence exclusion: a simple method to assess projected surface, volume and morphology of red blood cells stored in blood bank
.
Front Med (Lausanne)
.
2018
;
5
:
164
.
51.
Tuo
W-W
,
Wang
D
,
Liang
W-J
,
Huang
Y-X
.
How cell number and cellular properties of blood-banked red blood cells of different cell ages decline during storage
.
PLoS One
.
2014
;
9
(
8
):
e105692
.
52.
Mykhailova
O
,
Olafson
C
,
Turner
TR
,
DʼAlessandro
A
,
Acker
JP
.
Donor-dependent aging of young and old red blood cell subpopulations: metabolic and functional heterogeneity
.
Transfusion
.
2020
;
60
(
11
):
2633
-
2646
.
53.
Hod
EA
,
Zhang
N
,
Sokol
SA
, et al
.
Transfusion of red blood cells after prolonged storage produces harmful effects that are mediated by iron and inflammation
.
Blood
.
2010
;
115
(
21
):
4284
-
4292
.
54.
Hudson
KE
,
de Wolski
K
,
Kapp
LM
,
Richards
AL
,
Schniederjan
MJ
,
Zimring
JC
.
Antibodies to senescent antigen and C3 are not required for normal red blood cell lifespan in a murine model
.
Front Immunol
.
2017
;
8
:
1425
.
55.
Wojczyk
BS
,
Kim
N
,
Bandyopadhyay
S
, et al
.
Macrophages clear refrigerator storage-damaged red blood cells and subsequently secrete cytokines in vivo, but not in vitro, in a murine model
.
Transfusion
.
2014
;
54
(
12
):
3186
-
3197
.
56.
Veale
MF
,
Healey
G
,
Sparrow
RL
.
Longer storage of red blood cells is associated with increased in vitro erythrophagocytosis
.
Vox Sang
.
2014
;
106
(
3
):
219
-
226
.
57.
Francis
RO
,
Mahajan
S
,
Rapido
F
, et al
.
Reexamination of the chromium-51-labeled posttransfusion red blood cell recovery method
.
Transfusion
.
2019
;
59
(
7
):
2264
-
2275
.
58.
MacDonald
IC
,
Schmidt
EE
,
Groom
AC
.
The high splenic hematocrit: a rheological consequence of red cell flow through the reticular meshwork
.
Microvasc Res
.
1991
;
42
(
1
):
60
-
76
.
59.
Douglas
NM
,
Anstey
NM
,
Buffet
PA
, et al
.
The anaemia of Plasmodium vivax malaria
.
Malar J
.
2012
;
11
:
135
.
60.
White
NJ
.
Anaemia and malaria
.
Malar J
.
2018
;
17
(
1
):
371
.
61.
Laczkó
J
,
Szabolcs
M
,
Jóna
I
.
Vesicle release from erythrocytes during storage and failure of rejuvenation to restore cell morphology
.
Haematologia (Budap)
.
1985
;
18
(
4
):
233
-
248
.
62.
Hess
JR
.
Red cell changes during storage
.
Transfus Apheresis Sci
.
2010
;
43
(
1
):
51
-
59
.
63.
Meryman
HT
,
Hornblower
M
,
Syring
R
,
Mesbah-Karimi
N
.
Extending the storage of red cells at 4 degrees C
.
Transfus Sci
.
1994
;
15
(
2
):
105
-
115
.
64.
Meryman
HT
.
Quarantine of red blood cells by long-term storage in the liquid phase
.
Transfus Clin Biol
.
1994
;
1
(
3
):
188
-
191
.
65.
Perrotta
S
,
Gallagher
PG
,
Mohandas
N
.
Hereditary spherocytosis
.
Lancet
.
2008
;
372
(
9647
):
1411
-
1426
.
66.
Waugh
RE
,
Sarelius
IH
.
Effects of lost surface area on red blood cells and red blood cell survival in mice
.
Am J Physiol
.
1996
;
271
(
6 Pt 1
):
C1847
-
C1852
.
67.
Safeukui
I
,
Correas
J-M
,
Brousse
V
, et al
.
Retention of Plasmodium falciparum ring-infected erythrocytes in the slow, open microcirculation of the human spleen
.
Blood
.
2008
;
112
(
6
):
2520
-
2528
.
68.
Marin
M
,
Roussel
C
,
Dussiot
M
, et al
.
Metabolic rejuvenation upgrades circulatory functions of red blood cells stored under blood bank conditions [published online ahead of print 31 December 2020]
.
Transfusion
.
doi:10.1111/trf.16245
.
69.
Verhoeven
AJ
,
Hilarius
PM
,
Dekkers
DWC
,
Lagerberg
JWM
,
de Korte
D
.
Prolonged storage of red blood cells affects aminophospholipid translocase activity
.
Vox Sang
.
2006
;
91
(
3
):
244
-
251
.
70.
Azouzi
S
,
Romana
M
,
Arashiki
N
, et al
.
Band 3 phosphorylation induces irreversible alterations of stored red blood cells
.
Am J Hematol
.
2018
;
93
(
5
):
E110
-
E112
.
71.
Anniss
AM
,
Sparrow
RL
.
Expression of CD47 (integrin-associated protein) decreases on red blood cells during storage
.
Transfus Apheresis Sci
.
2002
;
27
(
3
):
233
-
238
.
72.
Zimring
JC
,
Smith
N
,
Stowell
SR
, et al
.
Strain-specific red blood cell storage, metabolism, and eicosanoid generation in a mouse model
.
Transfusion
.
2014
;
54
(
1
):
137
-
148
.
73.
D’Alessandro
A
,
Zimring
JC
,
Busch
M
.
Chronological storage age and metabolic age of stored red blood cells: are they the same?
Transfusion
.
2019
;
59
(
5
):
1620
-
1623
.
74.
Roussel
C
,
Buffet
PA
,
Amireault
P
.
Measuring post-transfusion recovery and survival of red blood cells: strengths and weaknesses of chromium-51 labeling and alternative methods
.
Front Med (Lausanne)
.
2018
;
5
:
130
.
75.
Glynn
SA
,
Klein
HG
,
Ness
PM
.
The red blood cell storage lesion: the end of the beginning
.
Transfusion
.
2016
;
56
(
6
):
1462
-
1468
.
76.
Cancelas
JA
,
Dumont
LJ
,
Maes
LA
, et al
.
Additive solution-7 reduces the red blood cell cold storage lesion
.
Transfusion
.
2015
;
55
(
3
):
491
-
498
.
77.
Dumont
LJ
,
Yoshida
T
,
AuBuchon
JP
.
Anaerobic storage of red blood cells in a novel additive solution improves in vivo recovery
.
Transfusion
.
2009
;
49
(
3
):
458
-
464
.
78.
Lanteri
MC
,
Kanias
T
,
Keating
S
, et al;
NHLBI Recipient Epidemiology Donor Evaluation Study (REDS)-III Program
.
Intradonor reproducibility and changes in hemolytic variables during red blood cell storage: results of recall phase of the REDS-III RBC-Omics study
.
Transfusion
.
2019
;
59
(
1
):
79
-
88
.
You do not currently have access to this content.

Sign in via your Institution

Sign In