Key Points

  • Tumor mutations in STK11, KRAS, CTNNB1, KEAP1, CDKN2B, MET, and SETD2 modulate the risk of cancer-associated thrombosis.

  • The presence of clonal hematopoiesis does not affect the risk of cancer-associated thrombosis.

Abstract

Venous thromboembolism (VTE) associated with cancer (CAT) is a well-described complication of cancer and a leading cause of death in patients with cancer. The purpose of this study was to assess potential associations of molecular signatures with CAT, including tumor-specific mutations and the presence of clonal hematopoiesis. We analyzed deep-coverage targeted DNA-sequencing data of >14 000 solid tumor samples using the Memorial Sloan Kettering–Integrated Mutation Profiling of Actionable Cancer Targets platform to identify somatic alterations associated with VTE. End point was defined as the first instance of cancer-associated pulmonary embolism and/or proximal/distal lower extremity deep vein thrombosis. Cause-specific Cox proportional hazards regression was used, adjusting for pertinent clinical covariates. Of 11 695 evaluable individuals, 72% had metastatic disease at time of analysis. Tumor-specific mutations in KRAS (hazard ratio [HR], 1.34; 95% confidence interval (CI), 1.09-1.64; adjusted P = .08), STK11 (HR, 2.12; 95% CI, 1.55-2.89; adjusted P < .001), KEAP1 (HR, 1.84; 95% CI, 1.21-2.79; adjusted P = .07), CTNNB1 (HR, 1.73; 95% CI, 1.15-2.60; adjusted P = .09), CDKN2B (HR, 1.45; 95% CI, 1.13-1.85; adjusted P = .07), and MET (HR, 1.83; 95% CI, 1.15-2.92; adjusted P = .09) were associated with a significantly increased risk of CAT independent of tumor type. Mutations in SETD2 were associated with a decreased risk of CAT (HR, 0.35; 95% CI, 0.16-0.79; adjusted P = .09). The presence of clonal hematopoiesis was not associated with an increased VTE rate. This is the first large-scale analysis to elucidate tumor-specific genomic events associated with CAT. Somatic tumor mutations of STK11, KRAS, CTNNB1, KEAP1, CDKN2B, and MET were associated with an increased risk of VTE in patients with solid tumors. Further analysis is needed to validate these findings and identify additional molecular signatures unique to individual tumor types.

REFERENCES

1.
Khorana
AA
,
Francis
CW
,
Culakova
E
,
Kuderer
NM
,
Lyman
GH
.
Thromboembolism is a leading cause of death in cancer patients receiving outpatient chemotherapy
.
J Thromb Haemost
.
2007
;
5
(
3
):
632
-
634
.
2.
Horsted
F
,
West
J
,
Grainge
MJ
.
Risk of venous thromboembolism in patients with cancer: a systematic review and meta-analysis
.
PLoS Med
.
2012
;
9
(
7
):
e1001275
.
3.
Khorana
AA
,
Kuderer
NM
,
Culakova
E
,
Lyman
GH
,
Francis
CW
.
Development and validation of a predictive model for chemotherapy-associated thrombosis
.
Blood
.
2008
;
111
(
10
):
4902
-
4907
.
4.
Ay
C
,
Dunkler
D
,
Marosi
C
, et al
.
Prediction of venous thromboembolism in cancer patients
.
Blood
.
2010
;
116
(
24
):
5377
-
5382
.
5.
Cronin-Fenton
DP
,
Søndergaard
F
,
Pedersen
LA
, et al
.
Hospitalisation for venous thromboembolism in cancer patients and the general population: a population-based cohort study in Denmark, 1997-2006
.
Br J Cancer
.
2010
;
103
(
7
):
947
-
953
.
6.
Chew
HK
,
Wun
T
,
Harvey
D
,
Zhou
H
,
White
RH
.
Incidence of venous thromboembolism and its effect on survival among patients with common cancers
.
Arch Intern Med
.
2006
;
166
(
4
):
458
-
464
.
7.
Ahlbrecht
J
,
Dickmann
B
,
Ay
C
, et al
.
Tumor grade is associated with venous thromboembolism in patients with cancer: results from the Vienna Cancer and Thrombosis Study
.
J Clin Oncol
.
2012
;
30
(
31
):
3870
-
3875
.
8.
Heit
JA
,
Silverstein
MD
,
Mohr
DN
,
Petterson
TM
,
O’Fallon
WM
,
Melton
LJ
III
.
Risk factors for deep vein thrombosis and pulmonary embolism: a population-based case-control study
.
Arch Intern Med
.
2000
;
160
(
6
):
809
-
815
.
9.
Starling
N
,
Rao
S
,
Cunningham
D
, et al
.
Thromboembolism in patients with advanced gastroesophageal cancer treated with anthracycline, platinum, and fluoropyrimidine combination chemotherapy: a report from the UK National Cancer Research Institute Upper Gastrointestinal Clinical Studies Group
.
J Clin Oncol
.
2009
;
27
(
23
):
3786
-
3793
.
10.
Bohlius
J
,
Wilson
J
,
Seidenfeld
J
, et al
.
Recombinant human erythropoietins and cancer patients: updated meta-analysis of 57 studies including 9353 patients
.
J Natl Cancer Inst
.
2006
;
98
(
10
):
708
-
714
.
11.
Bennett
CL
,
Silver
SM
,
Djulbegovic
B
, et al
.
Venous thromboembolism and mortality associated with recombinant erythropoietin and darbepoetin administration for the treatment of cancer-associated anemia
.
JAMA
.
2008
;
299
(
8
):
914
-
924
.
12.
Nalluri
SR
,
Chu
D
,
Keresztes
R
,
Zhu
X
,
Wu
S
.
Risk of venous thromboembolism with the angiogenesis inhibitor bevacizumab in cancer patients: a meta-analysis
.
JAMA
.
2008
;
300
(
19
):
2277
-
2285
.
13.
Khorana
AA
,
Francis
CW
,
Culakova
E
,
Kuderer
NM
,
Lyman
GH
.
Frequency, risk factors, and trends for venous thromboembolism among hospitalized cancer patients
.
Cancer
.
2007
;
110
(
10
):
2339
-
2346
.
14.
Alcalay
A
,
Wun
T
,
Khatri
V
, et al
.
Venous thromboembolism in patients with colorectal cancer: incidence and effect on survival
.
J Clin Oncol
.
2006
;
24
(
7
):
1112
-
1118
.
15.
Khorana
AA
,
Francis
CW
.
Risk prediction of cancer-associated thrombosis: appraising the first decade and developing the future
.
Thromb Res
.
2018
;
164
(
suppl 1
):
S70
-
S76
.
16.
Falanga
ASF
,
Russ
L
. Pathophysiology 1. Mechanisms of thrombosis in cancer patients. In:
Soff
G
, ed.
Thrombosis and Hemostasis in Cancer
.
Gewerbestrasse, Switzerland
:
Springer
;
2019
:
11
-
36
.
17.
Chew
HK
,
Davies
AM
,
Wun
T
,
Harvey
D
,
Zhou
H
,
White
RH
.
The incidence of venous thromboembolism among patients with primary lung cancer
.
J Thromb Haemost
.
2008
;
6
(
4
):
601
-
608
.
18.
Blom
JW
,
Osanto
S
,
Rosendaal
FR
.
The risk of a venous thrombotic event in lung cancer patients: higher risk for adenocarcinoma than squamous cell carcinoma
.
J Thromb Haemost
.
2004
;
2
(
10
):
1760
-
1765
.
19.
Magnus
N
,
D’Asti
E
,
Meehan
B
,
Garnier
D
,
Rak
J
.
Oncogenes and the coagulation system—forces that modulate dormant and aggressive states in cancer
.
Thromb Res
.
2014
;
133
(
suppl 2
):
S1
-
S9
.
20.
Corrales-Rodriguez
L
,
Soulières
D
,
Weng
X
,
Tehfe
M
,
Florescu
M
,
Blais
N
.
Mutations in NSCLC and their link with lung cancer-associated thrombosis: a case-control study
.
Thromb Res
.
2014
;
133
(
1
):
48
-
51
.
21.
Ades
S
,
Kumar
S
,
Alam
M
, et al
.
Tumor oncogene (KRAS) status and risk of venous thrombosis in patients with metastatic colorectal cancer
.
J Thromb Haemost
.
2015
;
13
(
6
):
998
-
1003
.
22.
Verso
M
,
Chiari
R
,
Mosca
S
, et al
.
Incidence of CT scan-detected pulmonary embolism in patients with oncogene-addicted, advanced lung adenocarcinoma
.
Thromb Res
.
2015
;
136
(
5
):
924
-
927
.
23.
Zer
A
,
Moskovitz
M
,
Hwang
DM
, et al
.
ALK-rearranged non-small-cell lung cancer is associated with a high rate of venous thromboembolism
.
Clin Lung Cancer
.
2017
;
18
(
2
):
156
-
161
.
24.
Ng
TL
,
Smith
DE
,
Mushtaq
R
, et al
.
ROS1 gene rearrangements are associated with an elevated risk of peridiagnosis thromboembolic events
.
J Thorac Oncol
.
2019
;
14
(
4
):
596
-
605
.
25.
Wang
J
,
Hu
B
,
Li
T
, et al
.
The EGFR-rearranged adenocarcinoma is associated with a high rate of venous thromboembolism
.
Ann Transl Med
.
2019
;
7
(
23
):
724
.
26.
Davidsson
E
,
Murgia
N
,
Ortiz-Villalón
C
, et al
.
Mutational status predicts the risk of thromboembolic events in lung adenocarcinoma
.
Multidiscip Respir Med
.
2017
;
12
(
1
):
16
.
27.
Dou
F
,
Li
H
,
Zhu
M
, et al
.
Association between oncogenic status and risk of venous thromboembolism in patients with non-small cell lung cancer
.
Respir Res
.
2018
;
19
(
1
):
88
.
28.
Berger
N
,
Datta
D
,
Tannenbaum
S
.
Venous thromboembolism and EGFR mutation status in advanced adenocarcinoma of lung
.
Chest
.
2014
;
146
(
4 suppl 2
):
600A
.
29.
Hamada
K
,
Kuratsu
J
,
Saitoh
Y
,
Takeshima
H
,
Nishi
T
,
Ushio
Y
.
Expression of tissue factor correlates with grade of malignancy in human glioma
.
Cancer
.
1996
;
77
(
9
):
1877
-
1883
.
30.
Perry
JR
.
Thromboembolic disease in patients with high-grade glioma
.
Neuro-oncol
.
2012
;
14
(
suppl 4
):
iv73
-
iv80
.
31.
Unruh
D
,
Schwarze
SR
,
Khoury
L
, et al
.
Mutant IDH1 and thrombosis in gliomas
.
Acta Neuropathol
.
2016
;
132
(
6
):
917
-
930
.
32.
Mir Seyed Nazari
P
,
Riedl
J
,
Preusser
M
, et al
.
Combination of isocitrate dehydrogenase 1 (IDH1) mutation and podoplanin expression in brain tumors identifies patients at high or low risk of venous thromboembolism
.
J Thromb Haemost
.
2018
;
16
(
6
):
1121
-
1127
.
33.
Boccaccio
C
,
Sabatino
G
,
Medico
E
, et al
.
The MET oncogene drives a genetic programme linking cancer to haemostasis
.
Nature
.
2005
;
434
(
7031
):
396
-
400
.
34.
Tawil
N
,
Bassawon
R
,
Rak
J
.
Oncogenes and clotting factors: the emerging role of tumor cell genome and epigenome in cancer-associated thrombosis
.
Semin Thromb Hemost
.
2019
;
45
(
4
):
373
-
384
.
35.
Jaiswal
S
,
Ebert
BL
.
Clonal hematopoiesis in human aging and disease
.
Science
.
2019
;
366
(
6465
):
eaan4673
.
36.
Coombs
CC
,
Zehir
A
,
Devlin
SM
, et al
.
Therapy-related clonal hematopoiesis in patients with non-hematologic cancers is common and associated with adverse clinical outcomes
.
Cell Stem Cell
.
2017
;
21
(
3
):
374
-
382.e374
.
37.
Jaiswal
S
,
Fontanillas
P
,
Flannick
J
, et al
.
Age-related clonal hematopoiesis associated with adverse outcomes
.
N Engl J Med
.
2014
;
371
(
26
):
2488
-
2498
.
38.
Wolach
O
,
Sellar
RS
,
Martinod
K
, et al
.
Increased neutrophil extracellular trap formation promotes thrombosis in myeloproliferative neoplasms
.
Sci Transl Med
.
2018
;
10
(
436
):
eaan8292
.
39.
Cheng
DT
,
Mitchell
TN
,
Zehir
A
, et al
.
Memorial Sloan Kettering-Integrated Mutation Profiling of Actionable Cancer Targets (MSK-IMPACT): a hybridization capture-based next-generation sequencing clinical assay for solid tumor molecular oncology
.
J Mol Diagn
.
2015
;
17
(
3
):
251
-
264
.
40.
Zehir
A
,
Benayed
R
,
Shah
RH
, et al
.
Mutational landscape of metastatic cancer revealed from prospective clinical sequencing of 10,000 patients [published correction appears in Nat Med. 2017;23(8):1004]
.
Nat Med
.
2017
;
23
(
6
):
703
-
713
.
41.
Cerami
E
,
Gao
J
,
Dogrusoz
U
, et al
.
The cBio Cancer Genomics Portal: an open platform for exploring multidimensional cancer genomics data
.
Cancer Discov
.
2012
;
2
(
5
):
401
-
404
.
42.
Gao
J
,
Aksoy
BA
,
Dogrusoz
U
, et al
.
Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal
.
Sci Signal
.
2013
;
6
(
269
):
pl1
.
43.
Bailey
MH
,
Tokheim
C
,
Porta-Pardo
E
, et al;
Cancer Genome Atlas Research Network
.
Comprehensive characterization of cancer driver genes and mutations [published correction appears in Cell. 2018;174(4):1034-1035]
.
Cell
.
2018
;
173
(
2
):
371
-
385.e18
.
44.
Yan
H
,
Parsons
DW
,
Jin
G
, et al
.
IDH1 and IDH2 mutations in gliomas
.
N Engl J Med
.
2009
;
360
(
8
):
765
-
773
.
45.
Tavakkoli
M
,
Wilkins
CR
,
Mones
JV
,
Mauro
MJ
.
A novel paradigm between leukocytosis, G-CSF secretion, neutrophil-to-lymphocyte ratio, myeloid-derived suppressor cells, and prognosis in non-small cell lung cancer
.
Front Oncol
.
2019
;
9
:
295
.
46.
Demers
M
,
Krause
DS
,
Schatzberg
D
, et al
.
Cancers predispose neutrophils to release extracellular DNA traps that contribute to cancer-associated thrombosis
.
Proc Natl Acad Sci U S A
.
2012
;
109
(
32
):
13076
-
13081
.
47.
Hoadley
KA
,
Yau
C
,
Hinoue
T
, et al
.
Cell-of-origin patterns dominate the molecular classification of 10,000 tumors from 33 types of cancer
.
Cell
.
2018
;
173
(
2
):
291
-
304.e296
.
48.
Yu
JL
,
May
L
,
Lhotak
V
, et al
.
Oncogenic events regulate tissue factor expression in colorectal cancer cells: implications for tumor progression and angiogenesis
.
Blood
.
2005
;
105
(
4
):
1734
-
1741
.
49.
Provençal
M
,
Berger-Thibault
N
,
Labbé
D
, et al
.
Tissue factor mediates the HGF/Met-induced anti-apoptotic pathway in DAOY medulloblastoma cells
.
J Neurooncol
.
2010
;
97
(
3
):
365
-
372
.
50.
Unruh
D
,
Zewde
M
,
Buss
A
, et al
.
Methylation and transcription patterns are distinct in IDH mutant gliomas compared to other IDH mutant cancers
.
Sci Rep
.
2019
;
9
(
1
):
8946
.
51.
Hisada
Y
,
Mackman
N
.
Cancer-associated pathways and biomarkers of venous thrombosis
.
Blood
.
2017
;
130
(
13
):
1499
-
1506
.
52.
Magnus
N
,
Garnier
D
,
Meehan
B
, et al
.
Tissue factor expression provokes escape from tumor dormancy and leads to genomic alterations
.
Proc Natl Acad Sci U S A
.
2014
;
111
(
9
):
3544
-
3549
.
53.
Arbour
KC
,
Jordan
E
,
Kim
HR
, et al
.
Effects of co-occurring genomic alterations on outcomes in patients with KRAS-mutant non-small cell lung cancer
.
Clin Cancer Res
.
2018
;
24
(
2
):
334
-
340
.
54.
Petrelli
F
,
Cabiddu
M
,
Borgonovo
K
,
Barni
S
.
Risk of venous and arterial thromboembolic events associated with anti-EGFR agents: a meta-analysis of randomized clinical trials
.
Ann Oncol
.
2012
;
23
(
7
):
1672
-
1679
.
55.
Miroddi
M
,
Sterrantino
C
,
Simmonds
M
, et al
.
Systematic review and meta-analysis of the risk of severe and life-threatening thromboembolism in cancer patients receiving anti-EGFR monoclonal antibodies (cetuximab or panitumumab)
.
Int J Cancer
.
2016
;
139
(
10
):
2370
-
2380
.
You do not currently have access to this content.

Sign in via your Institution

Sign In