Key Points

  • Patient-derived KIT D816V iPSCs and CRISPR-engineered KIT D816V ESCs model SM disease heterogeneity and serve as a drug screening platform.

  • Nintedanib selectively targets KIT D816V iPSC- and ESC-derived cells and primary samples from SM patients.

Abstract

The KIT D816V mutation is found in >80% of patients with systemic mastocytosis (SM) and is key to neoplastic mast cell (MC) expansion and accumulation in affected organs. Therefore, KIT D816V represents a prime therapeutic target for SM. Here, we generated a panel of patient-specific KIT D816V induced pluripotent stem cells (iPSCs) from patients with aggressive SM and mast cell leukemia to develop a patient-specific SM disease model for mechanistic and drug-discovery studies. KIT D816V iPSCs differentiated into neoplastic hematopoietic progenitor cells and MCs with patient-specific phenotypic features, thereby reflecting the heterogeneity of the disease. CRISPR/Cas9n-engineered KIT D816V human embryonic stem cells (ESCs), when differentiated into hematopoietic cells, recapitulated the phenotype observed for KIT D816V iPSC hematopoiesis. KIT D816V causes constitutive activation of the KIT tyrosine kinase receptor, and we exploited our iPSCs and ESCs to investigate new tyrosine kinase inhibitors targeting KIT D816V. Our study identified nintedanib, a US Food and Drug Administration–approved angiokinase inhibitor that targets vascular endothelial growth factor receptor, platelet-derived growth factor receptor, and fibroblast growth factor receptor, as a novel KIT D816V inhibitor. Nintedanib selectively reduced the viability of iPSC-derived KIT D816V hematopoietic progenitor cells and MCs in the nanomolar range. Nintedanib was also active on primary samples of KIT D816V SM patients. Molecular docking studies show that nintedanib binds to the adenosine triphosphate binding pocket of inactive KIT D816V. Our results suggest nintedanib as a new drug candidate for KIT D816V–targeted therapy of advanced SM.

REFERENCES

1.
Valent
P
,
Horny
HP
,
Escribano
L
, et al
.
Diagnostic criteria and classification of mastocytosis: a consensus proposal
.
Leuk Res
.
2001
;
25
(
7
):
603
-
625
.
2.
Arber
DA
,
Orazi
A
,
Hasserjian
R
, et al
.
The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia [published correction appears in Blood. 2016;128(3):462-463]
.
Blood
.
2016
;
127
(
20
):
2391
-
2405
.
3.
Valent
P
,
Akin
C
,
Metcalfe
DD
.
Mastocytosis: 2016 updated WHO classification and novel emerging treatment concepts
.
Blood
.
2017
;
129
(
11
):
1420
-
1427
.
4.
Valent
P
,
Akin
C
,
Hartmann
K
, et al
.
Advances in the classification and treatment of mastocytosis: current status and outlook toward the future
.
Cancer Res
.
2017
;
77
(
6
):
1261
-
1270
.
5.
Vaes
M
,
Benghiat
FS
,
Hermine
O
.
Targeted treatment options in mastocytosis
.
Front Med (Lausanne)
.
2017
;
4
:
110
.
6.
Ustun
C
,
Arock
M
,
Kluin-Nelemans
HC
, et al
.
Advanced systemic mastocytosis: from molecular and genetic progress to clinical practice
.
Haematologica
.
2016
;
101
(
10
):
1133
-
1143
.
7.
Arock
M
,
Sotlar
K
,
Akin
C
, et al
.
KIT mutation analysis in mast cell neoplasms: recommendations of the European Competence Network on Mastocytosis
.
Leukemia
.
2015
;
29
(
6
):
1223
-
1232
.
8.
Arock
M
,
Wedeh
G
,
Hoermann
G
, et al
.
Preclinical human models and emerging therapeutics for advanced systemic mastocytosis
.
Haematologica
.
2018
;
103
(
11
):
1760
-
1771
.
9.
Xiang
Z
,
Kreisel
F
,
Cain
J
,
Colson
A
,
Tomasson
MH
.
Neoplasia driven by mutant c-KIT is mediated by intracellular, not plasma membrane, receptor signaling
.
Mol Cell Biol
.
2007
;
27
(
1
):
267
-
282
.
10.
Akin
C
,
Brockow
K
,
D’Ambrosio
C
, et al
.
Effects of tyrosine kinase inhibitor STI571 on human mast cells bearing wild-type or mutated c-kit
.
Exp Hematol
.
2003
;
31
(
8
):
686
-
692
.
11.
Shah
NP
,
Lee
FY
,
Luo
R
,
Jiang
Y
,
Donker
M
,
Akin
C
.
Dasatinib (BMS-354825) inhibits KITD816V, an imatinib-resistant activating mutation that triggers neoplastic growth in most patients with systemic mastocytosis
.
Blood
.
2006
;
108
(
1
):
286
-
291
.
12.
Gleixner
KV
,
Mayerhofer
M
,
Aichberger
KJ
, et al
.
PKC412 inhibits in vitro growth of neoplastic human mast cells expressing the D816V-mutated variant of KIT: comparison with AMN107, imatinib, and cladribine (2CdA) and evaluation of cooperative drug effects
.
Blood
.
2006
;
107
(
2
):
752
-
759
.
13.
Dubreuil
P
,
Letard
S
,
Ciufolini
M
, et al
.
Masitinib (AB1010), a potent and selective tyrosine kinase inhibitor targeting KIT
.
PLoS One
.
2009
;
4
(
9
):
e7258
.
14.
Lortholary
O
,
Chandesris
MO
,
Bulai Livideanu
C
, et al
.
Masitinib for treatment of severely symptomatic indolent systemic mastocytosis: a randomised, placebo-controlled, phase 3 study
.
Lancet
.
2017
;
389
(
10069
):
612
-
620
.
15.
Frost
MJ
,
Ferrao
PT
,
Hughes
TP
,
Ashman
LK
.
Juxtamembrane mutant V560GKit is more sensitive to Imatinib (STI571) compared with wild-type c-kit whereas the kinase domain mutant D816VKit is resistant
.
Mol Cancer Ther
.
2002
;
1
(
12
):
1115
-
1124
.
16.
Gotlib
J
,
Kluin-Nelemans
HC
,
George
TI
, et al
.
Efficacy and safety of midostaurin in advanced systemic mastocytosis
.
N Engl J Med
.
2016
;
374
(
26
):
2530
-
2541
.
17.
Jawhar
M
,
Schwaab
J
,
Naumann
N
, et al
.
Response and progression on midostaurin in advanced systemic mastocytosis: KIT D816V and other molecular markers
.
Blood
.
2017
;
130
(
2
):
137
-
145
.
18.
Valent
P
,
Akin
C
,
Hartmann
K
, et al
.
Midostaurin: a magic bullet that blocks mast cell expansion and activation
.
Ann Oncol
.
2017
;
28
(
10
):
2367
-
2376
.
19.
Evans
EK
,
Gardino
AK
,
Kim
JL
, et al
.
A precision therapy against cancers driven by KIT/PDGFRA mutations
.
Sci Transl Med
.
2017
;
9
(
414
):
1
-
12
.
20.
Baird
JH
,
Gotlib
J
.
Clinical validation of KIT inhibition in advanced systemic mastocytosis
.
Curr Hematol Malig Rep
.
2018
;
13
(
5
):
407
-
416
.
21.
Schneeweiss
M
,
Peter
B
,
Bibi
S
, et al
.
The KIT and PDGFRA switch-control inhibitor DCC-2618 blocks growth and survival of multiple neoplastic cell types in advanced mastocytosis
.
Haematologica
.
2018
;
103
(
5
):
799
-
809
.
22.
Schwaab
J
,
Schnittger
S
,
Sotlar
K
, et al
.
Comprehensive mutational profiling in advanced systemic mastocytosis
.
Blood
.
2013
;
122
(
14
):
2460
-
2466
.
23.
Jawhar
M
,
Schwaab
J
,
Schnittger
S
, et al
.
Molecular profiling of myeloid progenitor cells in multi-mutated advanced systemic mastocytosis identifies KIT D816V as a distinct and late event
.
Leukemia
.
2015
;
29
(
5
):
1115
-
1122
.
24.
Jawhar
M
,
Schwaab
J
,
Schnittger
S
, et al
.
Additional mutations in SRSF2, ASXL1 and/or RUNX1 identify a high-risk group of patients with KIT D816V(+) advanced systemic mastocytosis
.
Leukemia
.
2016
;
30
(
1
):
136
-
143
.
25.
Kotini
AG
,
Chang
C-J
,
Chow
A
, et al
.
Stage-specific human induced pluripotent stem cells map the progression of myeloid transformation to transplantable leukemia
.
Cell Stem Cell
.
2017
;
20
(
3
):
315
-
328.e7
.
26.
Rowe
RG
,
Daley
GQ
.
Induced pluripotent stem cells in disease modelling and drug discovery
.
Nat Rev Genet
.
2019
;
20
(
7
):
377
-
388
.
27.
Meents
JE
,
Bressan
E
,
Sontag
S
, et al
.
The role of Nav1.7 in human nociceptors: insights from human induced pluripotent stem cell-derived sensory neurons of erythromelalgia patients
.
Pain
.
2019
;
160
(
6
):
1327
-
1341
.
28.
Hotta
A
,
Yamanaka
S
.
From genomics to gene therapy: induced pluripotent stem cells meet genome editing
.
Annu Rev Genet
.
2015
;
49
(
1
):
47
-
70
.
29.
Sontag
S
,
Förster
M
,
Qin
J
, et al
.
Modelling IRF8 deficient human hematopoiesis and dendritic cell development with engineered iPS cells
.
Stem Cells
.
2017
;
35
(
4
):
898
-
908
.
30.
Lenz
M
,
Goetzke
R
,
Schenk
A
, et al
.
Epigenetic biomarker to support classification into pluripotent and non-pluripotent cells
.
Sci Rep
.
2015
;
5
(
1
):
8973
.
31.
Kovarova
M
,
Koller
B
.
Differentiation of mast cells from embryonic stem cells
.
Curr Protoc Immunol
.
2012
;
Chapter 22
(
Unit 22F
):
10.1
-
16
.
32.
Kovarova
M
,
Latour
AM
,
Chason
KD
,
Tilley
SL
,
Koller
BH
.
Human embryonic stem cells: a source of mast cells for the study of allergic and inflammatory diseases
.
Blood
.
2010
;
115
(
18
):
3695
-
3703
.
33.
Mayerhofer
M
,
Gleixner
KV
,
Hoelbl
A
, et al
.
Unique effects of KIT D816V in BaF3 cells: induction of cluster formation, histamine synthesis, and early mast cell differentiation antigens
.
J Immunol
.
2008
;
180
(
8
):
5466
-
5476
.
34.
Athuluri-Divakar
SK
,
Vasquez-Del Carpio
R
,
Dutta
K
, et al
.
A small molecule RAS-mimetic disrupts RAS association with effector proteins to block signaling
.
Cell
.
2016
;
165
(
3
):
643
-
655
.
35.
Bai
Y
,
Bandara
G
,
Ching Chan
E
, et al
.
Targeting the KIT activating switch control pocket: a novel mechanism to inhibit neoplastic mast cell proliferation and mast cell activation
.
Leukemia
.
2013
;
27
(
2
):
278
-
285
.
36.
Saleh
R
,
Wedeh
G
,
Herrmann
H
, et al
.
A new human mast cell line expressing a functional IgE receptor converts to tumorigenic growth by KIT D816V transfection
.
Blood
.
2014
;
124
(
1
):
111
-
120
.
37.
Hilberg
F
,
Roth
GJ
,
Krssak
M
, et al
.
BIBF 1120: triple angiokinase inhibitor with sustained receptor blockade and good antitumor efficacy
.
Cancer Res
.
2008
;
68
(
12
):
4774
-
4782
.
38.
Roth
GJ
,
Binder
R
,
Colbatzky
F
, et al
.
Nintedanib: from discovery to the clinic
.
J Med Chem
.
2015
;
58
(
3
):
1053
-
1063
.
39.
Wimazal
F
,
Jordan
J-H
,
Sperr
WR
, et al
.
Increased angiogenesis in the bone marrow of patients with systemic mastocytosis
.
Am J Pathol
.
2002
;
160
(
5
):
1639
-
1645
.
40.
Gardino
AK
,
Evans
EK
,
Kim
JL
, et al
.
Targeting kinases with precision
.
Mol Cell Oncol
.
2018
;
5
(
3
):
e1435183
.
41.
McClintock-Treep
SA
,
Horny
HP
,
Sotlar
K
,
Foucar
MK
,
Reichard
KK
.
KIT(D816V+) systemic mastocytosis associated with KIT(D816V+) acute erythroid leukaemia: first case report with molecular evidence for same progenitor cell derivation
.
J Clin Pathol
.
2009
;
62
(
12
):
1147
-
1149
.
42.
Jutzi
JS
,
Bogeska
R
,
Nikoloski
G
, et al
.
MPN patients harbor recurrent truncating mutations in transcription factor NF-E2
.
J Exp Med
.
2013
;
210
(
5
):
1003
-
1019
.
43.
Pelusi
N
,
Kosanke
M
,
Riedt
T
, et al
.
The spleen microenvironment influences disease transformation in a mouse model of KITD816V-dependent myeloproliferative neoplasm
.
Sci Rep
.
2017
;
7
(
1
):
41427
.
44.
Bapat
A
,
Keita
N
,
Martelly
W
, et al
.
Myeloid disease mutations of splicing factor SRSF2 cause G2-M arrest and skewed differentiation of human hematopoietic stem and progenitor cells
.
Stem Cells
.
2018
;
36
(
11
):
1663
-
1675
.
45.
Nakajima
H
,
Kunimoto
H
.
TET2 as an epigenetic master regulator for normal and malignant hematopoiesis
.
Cancer Sci
.
2014
;
105
(
9
):
1093
-
1099
.
46.
Sakurai
M
,
Kunimoto
H
,
Watanabe
N
, et al
.
Impaired hematopoietic differentiation of RUNX1-mutated induced pluripotent stem cells derived from FPD/AML patients
.
Leukemia
.
2014
;
28
(
12
):
2344
-
2354
.
47.
Wollin
L
,
Wex
E
,
Pautsch
A
, et al
.
Mode of action of nintedanib in the treatment of idiopathic pulmonary fibrosis
.
Eur Respir J
.
2015
;
45
(
5
):
1434
-
1445
.
48.
Crestani
B
,
Huggins
JT
,
Kaye
M
, et al
.
Long-term safety and tolerability of nintedanib in patients with idiopathic pulmonary fibrosis: results from the open-label extension study, INPULSIS-ON
.
Lancet Respir Med
.
2019
;
7
(
1
):
60
-
68
.
49.
Chaix
A
,
Lopez
S
,
Voisset
E
,
Gros
L
,
Dubreuil
P
,
De Sepulveda
P
.
Mechanisms of STAT protein activation by oncogenic KIT mutants in neoplastic mast cells
.
J Biol Chem
.
2011
;
286
(
8
):
5956
-
5966
.
50.
Grootens
J
,
Ungerstedt
JS
,
Ekoff
M
, et al
.
Single-cell analysis reveals the KIT D816V mutation in haematopoietic stem and progenitor cells in systemic mastocytosis
.
EBioMedicine
.
2019
;
43
:
150
-
158
.
51.
Eisenwort
G
,
Sadovnik
I
,
Schwaab
J
, et al
.
Identification of a leukemia-initiating stem cell in human mast cell leukemia
.
Leukemia
.
2019
;
33
(
11
):
2673
-
2684
.
You do not currently have access to this content.

Sign in via your Institution

Sign In