Key Points

  • LCH lesions are infiltrated with exhausted and dysfunctional T cells.

  • Immune checkpoint inhibition decreases disease burden in a preclinical mouse model of LCH and augments responses to MEK inhibition.

Abstract

Langerhans cell histiocytosis (LCH) is an inflammatory myeloid neoplasia characterized by granulomatous lesions containing pathological CD207+ dendritic cells (DCs) with persistent MAPK pathway activation. Standard-of-care chemotherapies are inadequate for most patients with multisystem disease, and optimal strategies for relapsed and refractory disease are not defined. The mechanisms underlying development of inflammation in LCH lesions, the role of inflammation in pathogenesis, and the potential for immunotherapy are unknown. Analysis of the immune infiltrate in LCH lesions identified the most prominent immune cells as T lymphocytes. Both CD8+ and CD4+ T cells exhibited “exhausted” phenotypes with high expression of the immune checkpoint receptors. LCH DCs showed robust expression of ligands to checkpoint receptors. Intralesional CD8+ T cells showed blunted expression of Tc1/Tc2 cytokines and impaired effector function. In contrast, intralesional regulatory T cells demonstrated intact suppressive activity. Treatment of BRAFV600ECD11c LCH mice with anti-PD-1 or MAPK inhibitor reduced lesion size, but with distinct responses. Whereas MAPK inhibitor treatment resulted in reduction of the myeloid compartment, anti-PD-1 treatment was associated with reduction in the lymphoid compartment. Notably, combined treatment with MAPK inhibitor and anti-PD-1 significantly decreased both CD8+ T cells and myeloid LCH cells in a synergistic fashion. These results are consistent with a model that MAPK hyperactivation in myeloid LCH cells drives recruitment of functionally exhausted T cells within the LCH microenvironment, and they highlight combined MAPK and checkpoint inhibition as a potential therapeutic strategy.

REFERENCES

REFERENCES
1.
Allen
CE
,
Merad
M
,
McClain
KL
.
Langerhans-Cell Histiocytosis
.
N Engl J Med
.
2018
;
379
(
9
):
856
-
868
.
2.
Berres
ML
,
Allen
CE
,
Merad
M
.
Pathological consequence of misguided dendritic cell differentiation in histiocytic diseases
.
Adv Immunol
.
2013
;
120
:
127
-
161
.
3.
Chakraborty
R
,
Burke
TM
,
Hampton
OA
, et al
.
Alternative genetic mechanisms of BRAF activation in Langerhans cell histiocytosis
.
Blood
.
2016
;
128
(
21
):
2533
-
2537
.
4.
Chakraborty
R
,
Hampton
OA
,
Shen
X
, et al
.
Mutually exclusive recurrent somatic mutations in MAP2K1 and BRAF support a central role for ERK activation in LCH pathogenesis
.
Blood
.
2014
;
124
(
19
):
3007
-
3015
.
5.
Berres
ML
,
Lim
KP
,
Peters
T
, et al
.
BRAF-V600E expression in precursor versus differentiated de0ndritic cells defines clinically distinct LCH risk groups [published correction appears in J Exp Med. 2015;212(2):281]
.
J Exp Med
.
2014
;
211
(
4
):
669
-
683
.
6.
Allen
CE
,
Li
L
,
Peters
TL
, et al
.
Cell-specific gene expression in Langerhans cell histiocytosis lesions reveals a distinct profile compared with epidermal Langerhans cells
.
J Immunol
.
2010
;
184
(
8
):
4557
-
4567
.
7.
Battistella
M
,
Fraitag
S
,
Teillac
DH
,
Brousse
N
,
de Prost
Y
,
Bodemer
C
.
Neonatal and early infantile cutaneous Langerhans cell histiocytosis: comparison of self-regressive and non-self-regressive forms
.
Arch Dermatol
.
2010
;
146
(
2
):
149
-
156
.
8.
Bechan
GI
,
Egeler
RM
,
Arceci
RJ
.
Biology of Langerhans cells and Langerhans cell histiocytosis
.
Int Rev Cytol
.
2006
;
254
:
1
-
43
.
9.
Gatalica
Z
,
Bilalovic
N
,
Palazzo
JP
, et al
.
Disseminated histiocytoses biomarkers beyond BRAFV600E: frequent expression of PD-L1
.
Oncotarget
.
2015
;
6
(
23
):
19819
-
19825
.
10.
Quispel
WT
,
Stegehuis-Kamp
JA
,
Santos
SJ
,
Egeler
RM
,
van Halteren
AG
.
Activated Conventional T-Cells Are Present in Langerhans Cell Histiocytosis Lesions Despite the Presence of Immune Suppressive Cytokines
.
J Interferon Cytokine Res
.
2015
;
35
(
10
):
831
-
839
.
11.
Senechal
B
,
Elain
G
,
Jeziorski
E
, et al
.
Expansion of regulatory T cells in patients with Langerhans cell histiocytosis
.
PLoS Med
.
2007
;
4
(
8
):
e253
.
12.
Tong
C
,
Jia
X
,
Jia
Y
,
He
Y
.
Langerhans cell histiocytosis in Chinese adults: absence of BRAF mutations and increased FOXP3(+) regulatory T cells
.
Int J Clin Exp Pathol
.
2014
;
7
(
6
):
3166
-
3173
.
13.
Zeng
K
,
Wang
Z
,
Ohshima
K
, et al
.
BRAF V600E mutation correlates with suppressive tumor immune microenvironment and reduced disease-free survival in Langerhans cell histiocytosis
.
OncoImmunology
.
2016
;
5
(
7
):
e1185582
.
org/10.1080/2162402X.2016.1185582
14.
Gadner
H
,
Minkov
M
,
Grois
N
, et al;
Histiocyte Society
.
Therapy prolongation improves outcome in multisystem Langerhans cell histiocytosis
.
Blood
.
2013
;
121
(
25
):
5006
-
5014
.
15.
Minkov
M
,
Grois
N
,
McClain
K
, et al
Histiocyte Society evaluation and treatment guidelines.
https://www2.hematologie-amc.nl/bestanden/hematologie/bijlagennietinDBS/SocietyLCHTreatmentGuidelines.PDF. Accessed 10 January 2020.
16.
Haupt
R
,
Nanduri
V
,
Calevo
MG
, et al
.
Permanent consequences in Langerhans cell histiocytosis patients: a pilot study from the Histiocyte Society-Late Effects Study Group
.
Pediatr Blood Cancer
.
2004
;
42
(
5
):
438
-
444
.
17.
Allen
CE
,
Ladisch
S
,
McClain
KL
.
How I treat Langerhans cell histiocytosis
.
Blood
.
2015
;
126
(
1
):
26
-
35
.
18.
Diamond
EL
,
Durham
BH
,
Ulaner
GA
, et al
.
Efficacy of MEK inhibition in patients with histiocytic neoplasms
.
Nature
.
2019
;
567
(
7749
):
521
-
524
.
19.
Diamond
EL
,
Subbiah
V
,
Lockhart
AC
, et al
.
Vemurafenib for BRAF V600-Mutant Erdheim-Chester Disease and Langerhans Cell Histiocytosis: Analysis of Data From the Histology-Independent, Phase 2, Open-label VE-BASKET Study
.
JAMA Oncol
.
2018
;
4
(
3
):
384
-
388
.
20.
Haroche
J
,
Cohen-Aubart
F
,
Emile
JF
, et al
.
Reproducible and sustained efficacy of targeted therapy with vemurafenib in patients with BRAF(V600E)-mutated Erdheim-Chester disease
.
J Clin Oncol
.
2015
;
33
(
5
):
411
-
418
.
21.
Hyman
DM
,
Puzanov
I
,
Subbiah
V
, et al
.
Vemurafenib in Multiple Nonmelanoma Cancers with BRAF V600 Mutations [published correction appears in N Engl J Med. 2018;379(16):1585]
.
N Engl J Med
.
2015
;
373
(
8
):
726
-
736
.
22.
Donadieu
J
,
Larabi
IA
,
Tardieu
M
, et al
.
Vemurafenib for Refractory Multisystem Langerhans Cell Histiocytosis in Children: An International Observational Study
.
J Clin Oncol
.
2019
;
37
(
31
):
2857
-
2865
.
23.
Eckstein
OS
,
Visser
J
,
Rodriguez-Galindo
C
,
Allen
CE
;
NACHO-LIBRE Study Group
.
Clinical responses and persistent BRAF V600E+ blood cells in children with LCH treated with MAPK pathway inhibition
.
Blood
.
2019
;
133
(
15
):
1691
-
1694
.
24.
Cohen Aubart
F
,
Emile
JF
,
Carrat
F
, et al
.
Targeted therapies in 54 patients with Erdheim-Chester disease, including follow-up after interruption (the LOVE study)
.
Blood
.
2017
;
130
(
11
):
1377
-
1380
.
25.
Schiffer
JT
,
Corey
L
.
Rapid host immune response and viral dynamics in herpes simplex virus-2 infection
.
Nat Med
.
2013
;
19
(
3
):
280
-
290
.
26.
Hogstad
B
,
Berres
ML
,
Chakraborty
R
, et al
.
RAF/MEK/extracellular signal-related kinase pathway suppresses dendritic cell migration and traps dendritic cells in Langerhans cell histiocytosis lesions
.
J Exp Med
.
2018
;
215
(
1
):
319
-
336
.
27.
Dankort
D
,
Filenova
E
,
Collado
M
,
Serrano
M
,
Jones
K
,
McMahon
M
.
A new mouse model to explore the initiation, progression, and therapy of BRAFV600E-induced lung tumors
.
Genes Dev
.
2007
;
21
(
4
):
379
-
384
.
28.
Nunamaker
EA
,
Anderson
RJ
,
Artwohl
JE
,
Lyubimov
AV
,
Fortman
JD
.
Predictive observation-based endpoint criteria for mice receiving total body irradiation
.
Comp Med
.
2013
;
63
(
4
):
313
-
322
.
29.
Shrum
B
,
Anantha
RV
,
Xu
SX
, et al
.
A robust scoring system to evaluate sepsis severity in an animal model
.
BMC Res Notes
.
2014
;
7
(
1
):
233
.
30.
Finck
R
,
Simonds
EF
,
Jager
A
, et al
.
Normalization of mass cytometry data with bead standards
.
Cytometry A
.
2013
;
83
(
5
):
483
-
494
.
31.
Di Stasi
A
,
De Angelis
B
,
Rooney
CM
, et al
.
T lymphocytes coexpressing CCR4 and a chimeric antigen receptor targeting CD30 have improved homing and antitumor activity in a Hodgkin tumor model
.
Blood
.
2009
;
113
(
25
):
6392
-
6402
.
32.
Chakraborty
R
,
Mahendravada
A
,
Perna
SK
, et al
.
Robust and cost effective expansion of human regulatory T cells highly functional in a xenograft model of graft-versus-host disease
.
Haematologica
.
2013
;
98
(
4
):
533
-
537
.
33.
Van Gassen
S
,
Callebaut
B
,
Van Helden
MJ
, et al
.
FlowSOM: Using self-organizing maps for visualization and interpretation of cytometry data
.
Cytometry A
.
2015
;
87
(
7
):
636
-
645
.
34.
Reiser
J
,
Banerjee
A
.
Effector, Memory, and Dysfunctional CD8(+) T Cell Fates in the Antitumor Immune Response
.
J Immunol Res
.
2016
;
2016
:
8941260
.
35.
Wherry
EJ
,
Kurachi
M
.
Molecular and cellular insights into T cell exhaustion
.
Nat Rev Immunol
.
2015
;
15
(
8
):
486
-
499
.
36.
da Costa
CE
,
Szuhai
K
,
van Eijk
R
, et al
.
No genomic aberrations in Langerhans cell histiocytosis as assessed by diverse molecular technologies
.
Genes Chromosomes Cancer
.
2009
;
48
(
3
):
239
-
249
.
37.
Collin
M
,
Milne
P
.
Langerhans cell origin and regulation
.
Curr Opin Hematol
.
2016
;
23
(
1
):
28
-
35
.
38.
Egeler
RM
,
Favara
BE
,
Laman
JD
,
Claassen
E
.
Abundant expression of CD40 and CD40-ligand (CD154) in paediatric Langerhans cell histiocytosis lesions
.
Eur J Cancer
.
2000
;
36
(
16
):
2105
-
2110
.
39.
Geissmann
F
,
Lepelletier
Y
,
Fraitag
S
, et al
.
Differentiation of Langerhans cells in Langerhans cell histiocytosis
.
Blood
.
2001
;
97
(
5
):
1241
-
1248
.
40.
Tazi
A
,
Moreau
J
,
Bergeron
A
,
Dominique
S
,
Hance
AJ
,
Soler
P
.
Evidence that Langerhans cells in adult pulmonary Langerhans cell histiocytosis are mature dendritic cells: importance of the cytokine microenvironment
.
J Immunol
.
1999
;
163
(
6
):
3511
-
3515
.
41.
Emile
JF
,
Fraitag
S
,
Leborgne
M
,
de Prost
Y
,
Brousse
N
.
Langerhans’ cell histiocytosis cells are activated Langerhans’ cells
.
J Pathol
.
1994
;
174
(
2
):
71
-
76
.
42.
Sahm
F
,
Capper
D
,
Preusser
M
, et al
.
BRAFV600E mutant protein is expressed in cells of variable maturation in Langerhans cell histiocytosis
.
Blood
.
2012
;
120
(
12
):
e28
-
e34
.
43.
Hutter
C
,
Kauer
M
,
Simonitsch-Klupp
I
, et al
.
Notch is active in Langerhans cell histiocytosis and confers pathognomonic features on dendritic cells
.
Blood
.
2012
;
120
(
26
):
5199
-
5208
.
44.
Allen
CE
,
Flores
R
,
Rauch
R
, et al
.
Neurodegenerative central nervous system Langerhans cell histiocytosis and coincident hydrocephalus treated with vincristine/cytosine arabinoside
.
Pediatr Blood Cancer
.
2010
;
54
(
3
):
416
-
423
.
45.
Halbritter
F
,
Farlik
M
,
Schwentner
R
, et al
.
Epigenomics and Single-Cell Sequencing Define a Developmental Hierarchy in Langerhans Cell Histiocytosis
.
Cancer Discov
.
2019
;
9
(
10
):
1406
-
1421
.
46.
Mitchell
JM
,
Berzins
SP
,
Kannourakis
G
.
A potentially important role for T cells and regulatory T cells in Langerhans cell histiocytosis
.
Clin Immunol
.
2018
;
194
:
19
-
25
.
47.
Ansell
SM
,
Lesokhin
AM
,
Borrello
I
, et al
.
PD-1 blockade with nivolumab in relapsed or refractory Hodgkin’s lymphoma
.
N Engl J Med
.
2015
;
372
(
4
):
311
-
319
.
48.
Powles
T
,
Eder
JP
,
Fine
GD
, et al
.
MPDL3280A (anti-PD-L1) treatment leads to clinical activity in metastatic bladder cancer
.
Nature
.
2014
;
515
(
7528
):
558
-
562
.
49.
Rizvi
NA
,
Mazières
J
,
Planchard
D
, et al
.
Activity and safety of nivolumab, an anti-PD-1 immune checkpoint inhibitor, for patients with advanced, refractory squamous non-small-cell lung cancer (CheckMate 063): a phase 2, single-arm trial
.
Lancet Oncol
.
2015
;
16
(
3
):
257
-
265
.
50.
Topalian
SL
,
Hodi
FS
,
Brahmer
JR
, et al
.
Safety, activity, and immune correlates of anti-PD-1 antibody in cancer
.
N Engl J Med
.
2012
;
366
(
26
):
2443
-
2454
.
51.
Diamond
EL
,
Durham
BH
,
Haroche
J
, et al
.
Diverse and Targetable Kinase Alterations Drive Histiocytic Neoplasms
.
Cancer Discov
.
2016
;
6
(
2
):
154
-
165
.
52.
Zhang
Y
,
Velez-Delgado
A
,
Mathew
E
, et al
.
Myeloid cells are required for PD-1/PD-L1 checkpoint activation and the establishment of an immunosuppressive environment in pancreatic cancer
.
Gut
.
2017
;
66
(
1
):
124
-
136
.
53.
Das
R
,
Bar
N
,
Ferreira
M
, et al
.
Early B cell changes predict autoimmunity following combination immune checkpoint blockade
.
J Clin Invest
.
2018
;
128
(
2
):
715
-
720
.
You do not currently have access to this content.

Sign in via your Institution

Sign In