Key Points

  • GCK activity is critical in MM harboring RAS mutations.

  • GCK inhibition induces degradation of IKZF1/3 in a Cereblon-independent fashion.

Abstract

In multiple myeloma (MM), frequent mutations of NRAS, KRAS, or BRAF are found in up to 50% of newly diagnosed patients. The majority of the NRAS, KRAS, and BRAF mutations occur in hotspots causing constitutive activation of the corresponding proteins. Thus, targeting RAS mutation in MM will increase therapeutic efficiency and potentially overcome drug resistance. We identified germinal center kinase (GCK) as a novel therapeutic target in MM with RAS mutation. GCK knockdown (KD) in MM cells demonstrated in vitro and in vivo that silencing of GCK induces MM cell growth inhibition, associated with blocked MKK4/7-JNK phosphorylation and impaired degradation of IKZF1/3, BCL-6, and c-MYC. These effects were rescued by overexpression of a short hairpin RNA (shRNA)-resistant GCK, thereby excluding the potential off-target effects of GCK KD. In contrast, overexpression of shRNA-resistant GCK kinase-dead mutant (K45A) inhibited MM cell proliferation and failed to rescue the effects of GCK KD on MM growth inhibition, indicating that GCK kinase activity is critical for regulating MM cell proliferation and survival. Importantly, the higher sensitivity to GCK KD in RASMut cells suggests that targeting GCK is effective in MM, which harbors RAS mutations. In accordance with the effects of GCK KD, the GCK inhibitor TL4-12 dose-dependently downregulated IKZF1 and BCL-6 and led to MM cell proliferation inhibition accompanied by induction of apoptosis. Here, our data identify GCK as a novel target in RASMut MM cells, providing a rationale to treat RAS mutations in MM. Furthermore, GCK inhibitors might represent an alternative therapy to overcome immunomodulatory drug resistance in MM.

REFERENCES

REFERENCES
1.
Kumar
SK
,
Rajkumar
V
,
Kyle
RA
, et al
.
Multiple myeloma
.
Nat Rev Dis Primers
.
2017
;
3
(
1
):
17046
.
2.
Anderson
KC
.
Progress and paradigms in multiple myeloma
.
Clin Cancer Res
.
2016
;
22
(
22
):
5419
-
5427
.
3.
Siegel
RL
,
Miller
KD
,
Jemal
A
.
Cancer statistics, 2016
.
CA Cancer J Clin
.
2016
;
66
(
1
):
7
-
30
.
4.
Moreau
P
.
How I treat myeloma with new agents
.
Blood
.
2017
;
130
(
13
):
1507
-
1513
.
5.
Malumbres
M
,
Barbacid
M
.
RAS oncogenes: the first 30 years
.
Nat Rev Cancer
.
2003
;
3
(
6
):
459
-
465
.
6.
Walker
BA
,
Boyle
EM
,
Wardell
CP
, et al
.
Mutational spectrum, copy number changes, and outcome: results of a sequencing study of patients with newly diagnosed myeloma
.
J Clin Oncol
.
2015
;
33
(
33
):
3911
-
3920
.
7.
Xu
J
,
Pfarr
N
,
Endris
V
, et al
.
Molecular signaling in multiple myeloma: association of RAS/RAF mutations and MEK/ERK pathway activation
.
Oncogenesis
.
2017
;
6
(
5
):
e337
.
8.
Kyriakis
JM
.
Signaling by the germinal center kinase family of protein kinases
.
J Biol Chem
.
1999
;
274
(
9
):
5259
-
5262
.
9.
Schouest
KR
,
Kurasawa
Y
,
Furuta
T
,
Hisamoto
N
,
Matsumoto
K
,
Schumacher
JM
.
The germinal center kinase GCK-1 is a negative regulator of MAP kinase activation and apoptosis in the C. elegans germline
.
PLoS One
.
2009
;
4
(
10
):
e7450
.
10.
Chuang
HC
,
Wang
X
,
Tan
TH
.
MAP4K family kinases in immunity and inflammation
.
Adv Immunol
.
2016
;
129
:
277
-
314
.
11.
Yin
H
,
Shi
Z
,
Jiao
S
, et al
.
Germinal center kinases in immune regulation
.
Cell Mol Immunol
.
2012
;
9
(
6
):
439
-
445
.
12.
Pombo
CM
,
Kehrl
JH
,
Sánchez
I
, et al
.
Activation of the SAPK pathway by the human STE20 homologue germinal centre kinase
.
Nature
.
1995
;
377
(
6551
):
750
-
754
.
13.
Chen
YM
,
Chuang
HC
,
Lin
WC
, et al
.
Germinal center kinase-like kinase overexpression in T cells as a novel biomarker in rheumatoid arthritis
.
Arthritis Rheum
.
2013
;
65
(
10
):
2573
-
2582
.
14.
Hao
W
,
Takano
T
,
Guillemette
J
,
Papillon
J
,
Ren
G
,
Cybulsky
AV
.
Induction of apoptosis by the Ste20-like kinase SLK, a germinal center kinase that activates apoptosis signal-regulating kinase and p38
.
J Biol Chem
.
2006
;
281
(
6
):
3075
-
3084
.
15.
Aung
HT
,
Schroder
K
,
Himes
SR
, et al
.
LPS regulates proinflammatory gene expression in macrophages by altering histone deacetylase expression
.
FASEB J
.
2006
;
20
(
9
):
1315
-
1327
.
16.
Zhong
J
,
Kyriakis
JM
.
Germinal center kinase is required for optimal Jun N-terminal kinase activation by Toll-like receptor agonists and is regulated by the ubiquitin proteasome system and agonist-induced, TRAF6-dependent stabilization
.
Mol Cell Biol
.
2004
;
24
(
20
):
9165
-
9175
.
17.
Ivanov
VN
,
Kehrl
JH
,
Ronai
Z
.
Role of TRAF2/GCK in melanoma sensitivity to UV-induced apoptosis
.
Oncogene
.
2000
;
19
(
7
):
933
-
942
.
18.
Matthews
JM
,
Bhatt
S
,
Patricelli
MP
, et al
.
Pathophysiological significance and therapeutic targeting of germinal center kinase in diffuse large B-cell lymphoma
.
Blood
.
2016
;
128
(
2
):
239
-
248
.
19.
Lau
KS
,
Zhang
T
,
Kendall
KR
,
Lauffenburger
D
,
Gray
NS
,
Haigis
KM
.
BAY61-3606 affects the viability of colon cancer cells in a genotype-directed manner
.
PLoS One
.
2012
;
7
(
7
):
e41343
.
20.
Li
S
,
Pal
R
,
Monaghan
SA
, et al
.
IMiD immunomodulatory compounds block C/EBPbeta translation through eIF4E down-regulation resulting in inhibition of MM
.
Blood
.
2011
;
117
(
19
):
5157
-
5165
.
21.
Tan
L
,
Nomanbhoy
T
,
Gurbani
D
, et al
.
Discovery of type II inhibitors of TGFβ-activated kinase 1 (TAK1) and mitogen-activated protein kinase kinase kinase kinase 2 (MAP4K2)
.
J Med Chem
.
2015
;
58
(
1
):
183
-
196
.
22.
Feng
R
,
Ma
H
,
Hassig
CA
, et al
.
KD5170, a novel mercaptoketone-based histone deacetylase inhibitor, exerts antimyeloma effects by DNA damage and mitochondrial signaling
.
Mol Cancer Ther
.
2008
;
7
(
6
):
1494
-
1505
.
23.
Lentzsch
S
,
Gries
M
,
Janz
M
,
Bargou
R
,
Dörken
B
,
Mapara
MY
.
Macrophage inflammatory protein 1-alpha (MIP-1 alpha) triggers migration and signaling cascades mediating survival and proliferation in multiple myeloma (MM) cells
.
Blood
.
2003
;
101
(
9
):
3568
-
3573
.
24.
Li
S
,
Fu
J
,
Lu
C
, et al
.
Elevated translation initiation factor eIF4E is an attractive therapeutic target in multiple myeloma
.
Mol Cancer Ther
.
2016
;
15
(
4
):
711
-
719
.
25.
Feng
R
,
Oton
A
,
Mapara
MY
,
Anderson
G
,
Belani
C
,
Lentzsch
S
.
The histone deacetylase inhibitor, PXD101, potentiates bortezomib-induced anti-multiple myeloma effect by induction of oxidative stress and DNA damage
.
Br J Haematol
.
2007
;
139
(
3
):
385
-
397
.
26.
Li
S
,
Fu
J
,
Wang
H
, et al
.
IMiD compounds affect CD34+ cell fate and maturation via CRBN-induced IKZF1 degradation
.
Blood Adv
.
2018
;
2
(
5
):
492
-
504
.
27.
Chng
WJ
,
Huang
GF
,
Chung
TH
, et al
.
Clinical and biological implications of MYC activation: a common difference between MGUS and newly diagnosed multiple myeloma
.
Leukemia
.
2011
;
25
(
6
):
1026
-
1035
.
28.
Holien
T
,
Våtsveen
TK
,
Hella
H
,
Waage
A
,
Sundan
A
.
Addiction to c-MYC in multiple myeloma
.
Blood
.
2012
;
120
(
12
):
2450
-
2453
.
29.
Lu
G
,
Middleton
RE
,
Sun
H
, et al
.
The myeloma drug lenalidomide promotes the cereblon-dependent destruction of Ikaros proteins
.
Science
.
2014
;
343
(
6168
):
305
-
309
.
30.
Krönke
J
,
Udeshi
ND
,
Narla
A
, et al
.
Lenalidomide causes selective degradation of IKZF1 and IKZF3 in multiple myeloma cells
.
Science
.
2014
;
343
(
6168
):
301
-
305
.
31.
Varjosalo
M
,
Björklund
M
,
Cheng
F
, et al
.
Application of active and kinase-deficient kinome collection for identification of kinases regulating hedgehog signaling
.
Cell
.
2008
;
133
(
3
):
537
-
548
.
32.
Thakurta
A
,
Gandhi
AK
,
Waldman
MF
, et al
.
Absence of mutations in cereblon (CRBN) and DNA damage-binding protein 1 (DDB1) genes and significance for IMiD therapy
.
Leukemia
.
2014
;
28
(
5
):
1129
-
1131
.
33.
Nguyen
LK
,
Kolch
W
,
Kholodenko
BN
.
When ubiquitination meets phosphorylation: a systems biology perspective of EGFR/MAPK signalling
.
Cell Commun Signal
.
2013
;
11
(
1
):
52
.
34.
Laine
A
,
Ronai
Z
.
Ubiquitin chains in the ladder of MAPK signaling
.
Sci STKE
.
2005
;
2005
(
281
):
re5
.
35.
Shaffer
AL
,
Emre
NC
,
Lamy
L
, et al
.
IRF4 addiction in multiple myeloma
.
Nature
.
2008
;
454
(
7201
):
226
-
231
.
You do not currently have access to this content.

Sign in via your Institution

Sign In