Abstract

Plasma cells no longer express a B-cell antigen receptor and are hence deprived of signals crucial for survival throughout B-cell development. Instead, normal plasma cells, as well as their malignant myeloma counterparts, heavily rely on communication with the bone marrow (BM) microenvironment for survival. The plasma cell heparan sulfate proteoglycan (HSPG) syndecan-1 (CD138) and HSPGs in the BM microenvironment act as master regulators of this communication by co-opting specific growth and survival factors from the BM niche. This designates syndecan-1/HSPGs and their synthesis machinery as potential treatment targets in multiple myeloma.

REFERENCES

REFERENCES
1.
Lam
KP
,
Kühn
R
,
Rajewsky
K
.
In vivo ablation of surface immunoglobulin on mature B cells by inducible gene targeting results in rapid cell death
.
Cell
.
1997
;
90
(
6
):
1073
-
1083
.
2.
Srinivasan
L
,
Sasaki
Y
,
Calado
DP
, et al
.
PI3 kinase signals BCR-dependent mature B cell survival
.
Cell
.
2009
;
139
(
3
):
573
-
586
.
3.
Esko
JD
,
Lindahl
U
.
Molecular diversity of heparan sulfate
.
J Clin Invest
.
2001
;
108
(
2
):
169
-
173
.
4.
Esko
JD
,
Selleck
SB
.
Order out of chaos: assembly of ligand binding sites in heparan sulfate
.
Annu Rev Biochem
.
2002
;
71
(
1
):
435
-
471
.
5.
Rapraeger
AC
,
Krufka
A
,
Olwin
BB
.
Requirement of heparan sulfate for bFGF-mediated fibroblast growth and myoblast differentiation
.
Science
.
1991
;
252
(
5013
):
1705
-
1708
.
6.
Pellegrini
L
,
Burke
DF
,
von Delft
F
,
Mulloy
B
,
Blundell
TL
.
Crystal structure of fibroblast growth factor receptor ectodomain bound to ligand and heparin
.
Nature
.
2000
;
407
(
6807
):
1029
-
1034
.
7.
Derksen
PW
,
Keehnen
RM
,
Evers
LM
,
van Oers
MH
,
Spaargaren
M
,
Pals
ST
.
Cell surface proteoglycan syndecan-1 mediates hepatocyte growth factor binding and promotes Met signaling in multiple myeloma
.
Blood
.
2002
;
99
(
4
):
1405
-
1410
.
8.
Hendriks
J
,
Planelles
L
,
de Jong-Odding
J
, et al
.
Heparan sulfate proteoglycan binding promotes APRIL-induced tumor cell proliferation
.
Cell Death Differ
.
2005
;
12
(
6
):
637
-
648
.
9.
Mahtouk
K
,
Cremer
FW
,
Rème
T
, et al
.
Heparan sulphate proteoglycans are essential for the myeloma cell growth activity of EGF-family ligands in multiple myeloma
.
Oncogene
.
2006
;
25
(
54
):
7180
-
7191
.
10.
Sarrazin
S
,
Lamanna
WC
,
Esko
JD
.
Heparan sulfate proteoglycans
.
Cold Spring Harb Perspect Biol
.
2011
;
3
(
7
):
a004952
.
11.
Ren
Z
,
van Andel
H
,
de Lau
W
, et al
.
Syndecan-1 promotes Wnt/β-catenin signaling in multiple myeloma by presenting Wnts and R-spondins
.
Blood
.
2018
;
131
(
9
):
982
-
994
.
12.
Häcker
U
,
Nybakken
K
,
Perrimon
N
.
Heparan sulphate proteoglycans: the sweet side of development
.
Nat Rev Mol Cell Biol
.
2005
;
6
(
7
):
530
-
541
.
13.
Reijmers
RM
,
Spaargaren
M
,
Pals
ST
.
Heparan sulfate proteoglycans in the control of B cell development and the pathogenesis of multiple myeloma
.
FEBS J
.
2013
;
280
(
10
):
2180
-
2193
.
14.
Knelson
EH
,
Nee
JC
,
Blobe
GC
.
Heparan sulfate signaling in cancer
.
Trends Biochem Sci
.
2014
;
39
(
6
):
277
-
288
.
15.
Shaffer
AL
,
Shapiro-Shelef
M
,
Iwakoshi
NN
, et al
.
XBP1, downstream of Blimp-1, expands the secretory apparatus and other organelles, and increases protein synthesis in plasma cell differentiation
.
Immunity
.
2004
;
21
(
1
):
81
-
93
.
16.
Sanderson
RD
,
Yang
Y
.
Syndecan-1: a dynamic regulator of the myeloma microenvironment
.
Clin Exp Metastasis
.
2008
;
25
(
2
):
149
-
159
.
17.
Reijmers
RM
,
Groen
RW
,
Rozemuller
H
, et al
.
Targeting EXT1 reveals a crucial role for heparan sulfate in the growth of multiple myeloma
.
Blood
.
2010
;
115
(
3
):
601
-
604
.
18.
McCarron
MJ
,
Park
PW
,
Fooksman
DR
.
CD138 mediates selection of mature plasma cells by regulating their survival
.
Blood
.
2017
;
129
(
20
):
2749
-
2759
.
19.
Reijmers
RM
,
Groen
RW
,
Kuil
A
, et al
.
Disruption of heparan sulfate proteoglycan conformation perturbs B-cell maturation and APRIL-mediated plasma cell survival
.
Blood
.
2011
;
117
(
23
):
6162
-
6171
.
20.
Mulloy
B
,
Forster
MJ
.
Conformation and dynamics of heparin and heparan sulfate
.
Glycobiology
.
2000
;
10
(
11
):
1147
-
1156
.
21.
Moreaux
J
,
Cremer
FW
,
Reme
T
, et al
.
The level of TACI gene expression in myeloma cells is associated with a signature of microenvironment dependence versus a plasmablastic signature
.
Blood
.
2005
;
106
(
3
):
1021
-
1030
.
22.
Chu
VT
,
Fröhlich
A
,
Steinhauser
G
, et al
.
Eosinophils are required for the maintenance of plasma cells in the bone marrow
.
Nat Immunol
.
2011
;
12
(
2
):
151
-
159
.
23.
Bonci
D
,
Hahne
M
,
Felli
N
,
Peschle
C
,
De Maria
R
.
Potential role of APRIL as autocrine growth factor for megakaryocytopoiesis
.
Blood
.
2004
;
104
(
10
):
3169
-
3172
.
24.
Kometani
K
,
Kurosaki
T
.
Differentiation and maintenance of long-lived plasma cells
.
Curr Opin Immunol
.
2015
;
33
:
64
-
69
.
25.
Moreaux
J
,
Sprynski
AC
,
Dillon
SR
, et al
.
APRIL and TACI interact with syndecan-1 on the surface of multiple myeloma cells to form an essential survival loop
.
Eur J Haematol
.
2009
;
83
(
2
):
119
-
129
.
26.
Kimberley
FC
,
van Bostelen
L
,
Cameron
K
, et al
.
The proteoglycan (heparan sulfate proteoglycan) binding domain of APRIL serves as a platform for ligand multimerization and cross-linking
.
FASEB J
.
2009
;
23
(
5
):
1584
-
1595
.
27.
Kimberley
F
,
Guadagnoli
M
,
van Eenennaam
H
,
Medema
JP
.
A proliferation-inducing ligand (APRIL): the development of antagonistic agents as potential therapeutics and deciphering the role of heparan sulphate proteoglycans (HSPGs) in APRIL signalling
.
Adv Exp Med Biol
.
2011
;
691
:
501
-
506
.
28.
Yang
Y
,
MacLeod
V
,
Dai
Y
, et al
.
The syndecan-1 heparan sulfate proteoglycan is a viable target for myeloma therapy
.
Blood
.
2007
;
110
(
6
):
2041
-
2048
.
29.
Akhmetzyanova
I
,
McCarron
MJ
,
Parekh
S
,
Chesi
M
,
Bergsagel
PL
,
Fooksman
DR
.
Dynamic CD138 surface expression regulates switch between myeloma growth and dissemination
.
Leukemia
.
2020
;
34
(
1
):
245
-
256
.
30.
Tai
YT
,
Acharya
C
,
An
G
, et al
.
APRIL and BCMA promote human multiple myeloma growth and immunosuppression in the bone marrow microenvironment
.
Blood
.
2016
;
127
(
25
):
3225
-
3236
.
31.
Derksen
PW
,
de Gorter
DJ
,
Meijer
HP
, et al
.
The hepatocyte growth factor/Met pathway controls proliferation and apoptosis in multiple myeloma
.
Leukemia
.
2003
;
17
(
4
):
764
-
774
.
32.
Beauvais
DM
,
Jung
O
,
Yang
Y
,
Sanderson
RD
,
Rapraeger
AC
.
Syndecan-1 (CD138) Suppresses apoptosis in multiple myeloma by activating IGF1 receptor: prevention by synstatinIGF1R inhibits tumor growth
.
Cancer Res
.
2016
;
76
(
17
):
4981
-
4993
.
33.
Mahtouk
K
,
Jourdan
M
,
De Vos
J
, et al
.
An inhibitor of the EGF receptor family blocks myeloma cell growth factor activity of HB-EGF and potentiates dexamethasone or anti-IL-6 antibody-induced apoptosis
.
Blood
.
2004
;
103
(
5
):
1829
-
1837
.
34.
Alexander
CM
,
Reichsman
F
,
Hinkes
MT
, et al
.
Syndecan-1 is required for Wnt-1-induced mammary tumorigenesis in mice
.
Nat Genet
.
2000
;
25
(
3
):
329
-
332
.
35.
Derksen
PW
,
Tjin
E
,
Meijer
HP
, et al
.
Illegitimate WNT signaling promotes proliferation of multiple myeloma cells
.
Proc Natl Acad Sci USA
.
2004
;
101
(
16
):
6122
-
6127
.
36.
Sukhdeo
K
,
Mani
M
,
Zhang
Y
, et al
.
Targeting the beta-catenin/TCF transcriptional complex in the treatment of multiple myeloma
.
Proc Natl Acad Sci USA
.
2007
;
104
(
18
):
7516
-
7521
.
37.
Chim
CS
,
Pang
R
,
Fung
TK
,
Choi
CL
,
Liang
R
.
Epigenetic dysregulation of Wnt signaling pathway in multiple myeloma
.
Leukemia
.
2007
;
21
(
12
):
2527
-
2536
.
38.
van Andel
H
,
Ren
Z
,
Koopmans
I
, et al
.
Aberrantly expressed LGR4 empowers Wnt signaling in multiple myeloma by hijacking osteoblast-derived R-spondins
.
Proc Natl Acad Sci USA
.
2017
;
114
(
2
):
376
-
381
.
39.
van Andel
H
,
Kocemba
KA
,
Spaargaren
M
,
Pals
ST
.
Aberrant Wnt signaling in multiple myeloma: molecular mechanisms and targeting options
.
Leukemia
.
2019
;
33
(
5
):
1063
-
1075
.
40.
Seidel
C
,
Børset
M
,
Hjertner
O
, et al
.
High levels of soluble syndecan-1 in myeloma-derived bone marrow: modulation of hepatocyte growth factor activity
.
Blood
.
2000
;
96
(
9
):
3139
-
3146
.
41.
Yang
Y
,
Yaccoby
S
,
Liu
W
, et al
.
Soluble syndecan-1 promotes growth of myeloma tumors in vivo
.
Blood
.
2002
;
100
(
2
):
610
-
617
.
42.
Jung
O
,
Beauvais
DM
,
Adams
KM
,
Rapraeger
AC
.
VLA-4 phosphorylation during tumor and immune cell migration relies on its coupling to VEGFR2 and CXCR4 by syndecan-1
.
J Cell Sci
.
2019
;
132
(
20
):
jcs232645
.
43.
Purushothaman
A
,
Uyama
T
,
Kobayashi
F
, et al
.
Heparanase-enhanced shedding of syndecan-1 by myeloma cells promotes endothelial invasion and angiogenesis
.
Blood
.
2010
;
115
(
12
):
2449
-
2457
.
44.
Ramani
VC
,
Purushothaman
A
,
Stewart
MD
, et al
.
The heparanase/syndecan-1 axis in cancer: mechanisms and therapies
.
FEBS J
.
2013
;
280
(
10
):
2294
-
2306
.
45.
Jung
O
,
Trapp-Stamborski
V
,
Purushothaman
A
, et al
.
Heparanase-induced shedding of syndecan-1/CD138 in myeloma and endothelial cells activates VEGFR2 and an invasive phenotype: prevention by novel synstatins
.
Oncogenesis
.
2016
;
5
(
2
):
e202
.
46.
Terpos
E
,
Ntanasis-Stathopoulos
I
,
Gavriatopoulou
M
,
Dimopoulos
MA
.
Pathogenesis of bone disease in multiple myeloma: from bench to bedside
.
Blood Cancer J
.
2018
;
8
(
1
):
7
.
47.
Standal
T
,
Seidel
C
,
Hjertner
Ø
, et al
.
Osteoprotegerin is bound, internalized, and degraded by multiple myeloma cells
.
Blood
.
2002
;
100
(
8
):
3002
-
3007
.
48.
Ramani
VC
,
Yang
Y
,
Ren
Y
,
Nan
L
,
Sanderson
RD
.
Heparanase plays a dual role in driving hepatocyte growth factor (HGF) signaling by enhancing HGF expression and activity
.
J Biol Chem
.
2011
;
286
(
8
):
6490
-
6499
.
49.
Rangarajan
S
,
Richter
JR
,
Richter
RP
, et al
.
Heparanase-enhanced shedding of syndecan-1 and its role in driving disease pathogenesis and progression
.
J Histochem Cytochem
.
2020
;
68
(
12
):
823
-
840
.
50.
Netelenbos
T
,
van den Born
J
,
Kessler
FL
, et al
.
Proteoglycans on bone marrow endothelial cells bind and present SDF-1 towards hematopoietic progenitor cells
.
Leukemia
.
2003
;
17
(
1
):
175
-
184
.
51.
Mansouri
R
,
Jouan
Y
,
Hay
E
, et al
.
Osteoblastic heparan sulfate glycosaminoglycans control bone remodeling by regulating Wnt signaling and the crosstalk between bone surface and marrow cells [published correction appears in Cell Death Dis. 2018;9:788]
.
Cell Death Dis
.
2017
;
8
(
6
):
e2902
.
52.
Papy-Garcia
D
,
Albanese
P
.
Heparan sulfate proteoglycans as key regulators of the mesenchymal niche of hematopoietic stem cells
.
Glycoconj J
.
2017
;
34
(
3
):
377
-
391
.
53.
Netelenbos
T
,
van den Born
J
,
Kessler
FL
,
Zweegman
S
,
Huijgens
PC
,
Drager
AM
.
In vitro model for hematopoietic progenitor cell homing reveals endothelial heparan sulfate proteoglycans as direct adhesive ligands
.
J Leukoc Biol
.
2003
;
74
(
6
):
1035
-
1044
.
54.
Tokoyoda
K
,
Egawa
T
,
Sugiyama
T
,
Choi
BI
,
Nagasawa
T
.
Cellular niches controlling B lymphocyte behavior within bone marrow during development
.
Immunity
.
2004
;
20
(
6
):
707
-
718
.
55.
Morris
AJ
,
Turnbull
JE
,
Riley
GP
,
Gordon
MY
,
Gallagher
JT
.
Production of heparan sulphate proteoglycans by human bone marrow stromal cells
.
J Cell Sci
.
1991
;
99
(
Pt 1
):
149
-
156
.
56.
Drzeniek
Z
,
Siebertz
B
,
Stöcker
G
, et al
.
Proteoglycan synthesis in haematopoietic cells: isolation and characterization of heparan sulphate proteoglycans expressed by the bone-marrow stromal cell line MS-5
.
Biochem J
.
1997
;
327
(
Pt 2
):
473
-
480
.
57.
Ren
Z
,
Lantermans
H
,
Kuil
A
, et al
.
The CXCL12gamma chemokine immobilized by heparan sulfate on stromal niche cells controls adhesion and mediates drug resistance in multiple myeloma
.
J Hematol Oncol
.
2021
;
14
(
1
):
11
.
58.
Laguri
C
,
Sadir
R
,
Rueda
P
, et al
.
The novel CXCL12gamma isoform encodes an unstructured cationic domain which regulates bioactivity and interaction with both glycosaminoglycans and CXCR4
.
PLoS One
.
2007
;
2
(
10
):
e1110
.
59.
Rueda
P
,
Balabanian
K
,
Lagane
B
, et al
.
The CXCL12gamma chemokine displays unprecedented structural and functional properties that make it a paradigm of chemoattractant proteins
.
PLoS One
.
2008
;
3
(
7
):
e2543
.
60.
Ikeda
H
,
Hideshima
T
,
Fulciniti
M
, et al
.
The monoclonal antibody nBT062 conjugated to cytotoxic Maytansinoids has selective cytotoxicity against CD138-positive multiple myeloma cells in vitro and in vivo
.
Clin Cancer Res
.
2009
;
15
(
12
):
4028
-
4037
.
61.
Schönfeld
K
,
Zuber
C
,
Pinkas
J
,
Häder
T
,
Bernöster
K
,
Uherek
C
.
Indatuximab ravtansine (BT062) combination treatment in multiple myeloma: pre-clinical studies
.
J Hematol Oncol
.
2017
;
10
(
1
):
13
.
62.
Jagannath
S
,
Heffner
LT
Jr.
,
Ailawadhi
S
, et al
.
Indatuximab ravtansine (BT062) monotherapy in patients with relapsed and/or refractory multiple myeloma
.
Clin Lymphoma Myeloma Leuk
.
2019
;
19
(
6
):
372
-
380
.
63.
Sun
C
,
Mahendravada
A
,
Ballard
B
, et al
.
Safety and efficacy of targeting CD138 with a chimeric antigen receptor for the treatment of multiple myeloma
.
Oncotarget
.
2019
;
10
(
24
):
2369
-
2383
.
64.
Lanzi
C
,
Zaffaroni
N
,
Cassinelli
G
.
Targeting heparan sulfate proteoglycans and their modifying enzymes to enhance anticancer chemotherapy efficacy and overcome drug resistance
.
Curr Med Chem
.
2017
;
24
(
26
):
2860
-
2886
.
65.
Mohamed
S
,
Coombe
DR
.
Heparin mimetics: their therapeutic potential
.
Pharmaceuticals (Basel)
.
2017
;
10
(
4
):
78
.
66.
Ritchie
JP
,
Ramani
VC
,
Ren
Y
, et al
.
SST0001, a chemically modified heparin, inhibits myeloma growth and angiogenesis via disruption of the heparanase/syndecan-1 axis
.
Clin Cancer Res
.
2011
;
17
(
6
):
1382
-
1393
.
67.
Ramani
VC
,
Zhan
F
,
He
J
, et al
.
Targeting heparanase overcomes chemoresistance and diminishes relapse in myeloma
.
Oncotarget
.
2016
;
7
(
2
):
1598
-
1607
.
68.
Hao
M
,
Franqui-Machin
R
,
Xu
H
, et al
.
NEK2 induces osteoclast differentiation and bone destruction via heparanase in multiple myeloma
.
Leukemia
.
2017
;
31
(
7
):
1648
-
1650
.
69.
Tripathi
K
,
Ramani
VC
,
Bandari
SK
, et al
.
Heparanase promotes myeloma stemness and in vivo tumorigenesis
.
Matrix Biol
.
2020
;
88
:
53
-
68
.
70.
Galli
M
,
Chatterjee
M
,
Grasso
M
, et al
.
Phase I study of the heparanase inhibitor roneparstat: an innovative approach for ultiple myeloma therapy
.
Haematologica
.
2018
;
103
(
10
):
e469
-
e472
.
71.
Habuchi
H
,
Habuchi
O
,
Kimata
K
.
Sulfation pattern in glycosaminoglycan: does it have a code?
Glycoconj J
.
2004
;
21
(
1-2
):
47
-
52
.
72.
Zheng
X
,
Gai
X
,
Han
S
, et al
.
The human sulfatase 2 inhibitor 2,4-disulfonylphenyl-tert-butylnitrone (OKN-007) has an antitumor effect in hepatocellular carcinoma mediated via suppression of TGFB1/SMAD2 and Hedgehog/GLI1 signaling
.
Genes Chromosomes Cancer
.
2013
;
52
(
3
):
225
-
236
.
73.
de Souza
PC
,
Balasubramanian
K
,
Njoku
C
, et al
.
OKN-007 decreases tumor necrosis and tumor cell proliferation and increases apoptosis in a preclinical F98 rat glioma model
.
J Magn Reson Imaging
.
2015
;
42
(
6
):
1582
-
1591
.
74.
Coutinho de Souza
P
,
Mallory
S
,
Smith
N
, et al
.
Inhibition of pediatric glioblastoma tumor growth by the anti-cancer agent OKN-007 in orthotopic mouse xenografts
.
PLoS One
.
2015
;
10
(
8
):
e0134276
.
75.
Towner
RA
,
Smith
N
,
Saunders
D
, et al
.
OKN-007 increases temozolomide (TMZ) sensitivity and suppresses TMZ-resistant glioblastoma (GBM) tumor growth
.
Transl Oncol
.
2019
;
12
(
2
):
320
-
335
.
You do not currently have access to this content.

Sign in via your Institution

Sign In