Key Points

  • We report autosomal-recessive germline deficiency of the methylcytosine dioxygenase TET2 in 3 immunodeficient children.

  • Their phenotype of immunodeficiency, autoimmunity and lymphoproliferation highlights requisite roles for TET2 in the human immune system.

Abstract

Molecular dissection of inborn errors of immunity can help to elucidate the nonredundant functions of individual genes. We studied 3 children with an immune dysregulation syndrome of susceptibility to infection, lymphadenopathy, hepatosplenomegaly, developmental delay, autoimmunity, and lymphoma of B-cell (n = 2) or T-cell (n = 1) origin. All 3 showed early autologous T-cell reconstitution following allogeneic hematopoietic stem cell transplantation. By whole-exome sequencing, we identified rare homozygous germline missense or nonsense variants in a known epigenetic regulator of gene expression: ten-eleven translocation methylcytosine dioxygenase 2 (TET2). Mutated TET2 protein was absent or enzymatically defective for 5-hydroxymethylating activity, resulting in whole-blood DNA hypermethylation. Circulating T cells showed an abnormal immunophenotype including expanded double-negative, but depleted follicular helper, T-cell compartments and impaired Fas-dependent apoptosis in 2 of 3 patients. Moreover, TET2-deficient B cells showed defective class-switch recombination. The hematopoietic potential of patient-derived induced pluripotent stem cells was skewed toward the myeloid lineage. These are the first reported cases of autosomal-recessive germline TET2 deficiency in humans, causing clinically significant immunodeficiency and an autoimmune lymphoproliferative syndrome with marked predisposition to lymphoma. This disease phenotype demonstrates the broad role of TET2 within the human immune system.

REFERENCES

1.
Tangye
SG
,
Al-Herz
W
,
Bousfiha
A
, et al
.
Human inborn errors of immunity: 2019 update on the classification from the International Union of Immunological Societies Expert Committee
.
J Clin Immunol
.
2020
;
40
(
1
):
24
-
64
.
2.
Bousfiha
A
,
Jeddane
L
,
Picard
C
, et al
.
Human inborn errors of immunity: 2019 update of the IUIS Phenotypical Classification
.
J Clin Immunol
.
2020
;
40
(
1
):
66
-
81
.
3.
Hauck
F
,
Voss
R
,
Urban
C
,
Seidel
MG
.
Intrinsic and extrinsic causes of malignancies in patients with primary immunodeficiency disorders
.
J Allergy Clin Immunol
.
2018
;
141
(
1
):
59
-
68.e4
.
4.
Price
S
,
Shaw
PA
,
Seitz
A
, et al
.
Natural history of autoimmune lymphoproliferative syndrome associated with FAS gene mutations
.
Blood
.
2014
;
123
(
13
):
1989
-
1999
.
5.
Fisher
GH
,
Rosenberg
FJ
,
Straus
SE
, et al
.
Dominant interfering Fas gene mutations impair apoptosis in a human autoimmune lymphoproliferative syndrome
.
Cell
.
1995
;
81
(
6
):
935
-
946
.
6.
Rieux-Laucat
F
,
Le Deist
F
,
Hivroz
C
, et al
.
Mutations in Fas associated with human lymphoproliferative syndrome and autoimmunity
.
Science
.
1995
;
268
(
5215
):
1347
-
1349
.
7.
Sneller
MC
,
Straus
SE
,
Jaffe
ES
, et al
.
A novel lymphoproliferative/autoimmune syndrome resembling murine lpr/gld disease
.
J Clin Invest
.
1992
;
90
(
2
):
334
-
341
.
8.
Awada
H
,
Nagata
Y
,
Goyal
A
, et al
.
Invariant phenotype and molecular association of biallelic TET2 mutant myeloid neoplasia
.
Blood Adv
.
2019
;
3
(
3
):
339
-
349
.
9.
Bussaglia
E
,
Antón
R
,
Nomdedéu
JF
,
Fuentes-Prior
P
.
TET2 missense variants in human neoplasia. A proposal of structural and functional classification
.
Mol Genet Genomic Med
.
2019
;
7
(
7
):
e00772
.
10.
Leeksma
OC
,
de Miranda
NF
,
Veelken
H
.
Germline mutations predisposing to diffuse large B-cell lymphoma [published correction appears in Blood Cancer J. 2017;7(2):e532]
.
Blood Cancer J
.
2017
;
7
(
3
):
e541
.
11.
Itzykson
R
,
Kosmider
O
,
Renneville
A
, et al
.
Clonal architecture of chronic myelomonocytic leukemias
.
Blood
.
2013
;
121
(
12
):
2186
-
2198
.
12.
Langemeijer
SMC
,
Kuiper
RP
,
Berends
M
, et al
.
Acquired mutations in TET2 are common in myelodysplastic syndromes
.
Nat Genet
.
2009
;
41
(
7
):
838
-
842
.
13.
Kosmider
O
,
Gelsi-Boyer
V
,
Ciudad
M
, et al;
Groupe Francophone des Myélodysplasies
.
TET2 gene mutation is a frequent and adverse event in chronic myelomonocytic leukemia
.
Haematologica
.
2009
;
94
(
12
):
1676
-
1681
.
14.
Delhommeau
F
,
Dupont
S
,
Della Valle
V
, et al
.
Mutation in TET2 in myeloid cancers
.
N Engl J Med
.
2009
;
360
(
22
):
2289
-
2301
.
15.
Ito
S
,
Shen
L
,
Dai
Q
, et al
.
Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine
.
Science
.
2011
;
333
(
6047
):
1300
-
1303
.
16.
Tahiliani
M
,
Koh
KP
,
Shen
Y
, et al
.
Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1
.
Science
.
2009
;
324
(
5929
):
930
-
935
.
17.
Kaasinen
E
,
Kuismin
O
,
Rajamäki
K
, et al
.
Impact of constitutional TET2 haploinsufficiency on molecular and clinical phenotype in humans
.
Nat Commun
.
2019
;
10
(
1
):
1252
.
18.
Rasmussen
KD
,
Berest
I
,
Keβler
S
, et al
.
TET2 binding to enhancers facilitates transcription factor recruitment in hematopoietic cells
.
Genome Res
.
2019
;
29
(
4
):
564
-
575
.
19.
Hon
GC
,
Song
CX
,
Du
T
, et al
.
5mC oxidation by Tet2 modulates enhancer activity and timing of transcriptome reprogramming during differentiation
.
Mol Cell
.
2014
;
56
(
2
):
286
-
297
.
20.
Klug
M
,
Schmidhofer
S
,
Gebhard
C
,
Andreesen
R
,
Rehli
M
.
5-Hydroxymethylcytosine is an essential intermediate of active DNA demethylation processes in primary human monocytes
.
Genome Biol
.
2013
;
14
(
5
):
R46
.
21.
Pronier
E
,
Almire
C
,
Mokrani
H
, et al
.
Inhibition of TET2-mediated conversion of 5-methylcytosine to 5-hydroxymethylcytosine disturbs erythroid and granulomonocytic differentiation of human hematopoietic progenitors
.
Blood
.
2011
;
118
(
9
):
2551
-
2555
.
22.
Ko
M
,
Huang
Y
,
Jankowska
AM
, et al
.
Impaired hydroxylation of 5-methylcytosine in myeloid cancers with mutant TET2
.
Nature
.
2010
;
468
(
7325
):
839
-
843
.
23.
Cimmino
L
,
Dolgalev
I
,
Wang
Y
, et al
.
Restoration of TET2 function blocks aberrant self-renewal and leukemia progression
.
Cell
.
2017
;
170
(
6
):
1079
-
1095.e20
.
24.
Pan
F
,
Wingo
TS
,
Zhao
Z
, et al
.
Tet2 loss leads to hypermutagenicity in haematopoietic stem/progenitor cells
.
Nat Commun
.
2017
;
8
(
1
):
15102
.
25.
Moran-Crusio
K
,
Reavie
L
,
Shih
A
, et al
.
Tet2 loss leads to increased hematopoietic stem cell self-renewal and myeloid transformation
.
Cancer Cell
.
2011
;
20
(
1
):
11
-
24
.
26.
Ko
M
,
Bandukwala
HS
,
An
J
, et al
.
Ten-eleven-translocation 2 (TET2) negatively regulates homeostasis and differentiation of hematopoietic stem cells in mice
.
Proc Natl Acad Sci USA
.
2011
;
108
(
35
):
14566
-
14571
.
27.
Li
Z
,
Cai
X
,
Cai
CL
, et al
.
Deletion of Tet2 in mice leads to dysregulated hematopoietic stem cells and subsequent development of myeloid malignancies
.
Blood
.
2011
;
118
(
17
):
4509
-
4518
.
28.
Quivoron
C
,
Couronné
L
,
Della Valle
V
, et al
.
TET2 inactivation results in pleiotropic hematopoietic abnormalities in mouse and is a recurrent event during human lymphomagenesis
.
Cancer Cell
.
2011
;
20
(
1
):
25
-
38
.
29.
Oliveira
JB
,
Bleesing
JJ
,
Dianzani
U
, et al
.
Revised diagnostic criteria and classification for the autoimmune lymphoproliferative syndrome (ALPS): report from the 2009 NIH International Workshop
.
Blood
.
2010
;
116
(
14
):
e35
-
e40
.
30.
Solary
E
,
Bernard
OA
,
Tefferi
A
,
Fuks
F
,
Vainchenker
W
.
The ten-eleven translocation-2 (TET2) gene in hematopoiesis and hematopoietic diseases
.
Leukemia
.
2014
;
28
(
3
):
485
-
496
.
31.
Hu
L
,
Li
Z
,
Cheng
J
, et al
.
Crystal structure of TET2-DNA complex: insight into TET-mediated 5mC oxidation
.
Cell
.
2013
;
155
(
7
):
1545
-
1555
.
32.
Cargo
C
,
Cullen
M
,
Taylor
J
, et al
.
The use of targeted sequencing and flow cytometry to identify patients with a clinically significant monocytosis
.
Blood
.
2019
;
133
(
12
):
1325
-
1334
.
33.
Lemonnier
F
,
Couronné
L
,
Parrens
M
, et al
.
Recurrent TET2 mutations in peripheral T-cell lymphomas correlate with TFH-like features and adverse clinical parameters
.
Blood
.
2012
;
120
(
7
):
1466
-
1469
.
34.
Muto
H
,
Sakata-Yanagimoto
M
,
Nagae
G
, et al
.
Reduced TET2 function leads to T-cell lymphoma with follicular helper T-cell-like features in mice
.
Blood Cancer J
.
2014
;
4
(
12
):
e264
.
35.
Engelhardt
KR
,
Gertz
ME
,
Keles
S
, et al
.
The extended clinical phenotype of 64 patients with dedicator of cytokinesis 8 deficiency
.
J Allergy Clin Immunol
.
2015
;
136
(
2
):
402
-
412
.
36.
Lu
W
,
Zhang
Y
,
McDonald
DO
, et al
.
Dual proteolytic pathways govern glycolysis and immune competence
.
Cell
.
2014
;
159
(
7
):
1578
-
1590
.
37.
Cocco
M
,
Stephenson
S
,
Care
MA
, et al
.
In vitro generation of long-lived human plasma cells
.
J Immunol
.
2012
;
189
(
12
):
5773
-
5785
.
38.
Dominguez
PM
,
Ghamlouch
H
,
Rosikiewicz
W
, et al
.
TET2 deficiency causes germinal center hyperplasia, impairs plasma cell differentiation and promotes B-cell lymphomagenesis
.
Cancer Discov
.
2018
;
8
(
12
):
1632
-
1653
.
39.
Shimoda
K
,
Shide
K
,
Kameda
T
, et al
.
TET2 mutation in adult T-cell leukemia/lymphoma
.
J Clin Exp Hematop
.
2015
;
55
(
3
):
145
-
149
.
40.
Kameda
T
,
Shide
K
,
Yamaji
T
, et al
.
Loss of TET2 has dual roles in murine myeloproliferative neoplasms: disease sustainer and disease accelerator
.
Blood
.
2015
;
125
(
2
):
304
-
315
.
41.
Asmar
F
,
Punj
V
,
Christensen
J
, et al
.
Genome-wide profiling identifies a DNA methylation signature that associates with TET2 mutations in diffuse large B-cell lymphoma
.
Haematologica
.
2013
;
98
(
12
):
1912
-
1920
.
42.
Fernández-Medarde
A
,
Santos
E
.
Ras in cancer and developmental diseases
.
Genes Cancer
.
2011
;
2
(
3
):
344
-
358
.
43.
Jin
X
,
Qin
T
,
Zhao
M
, et al
.
Oncogenic N-Ras and Tet2 haploinsufficiency collaborate to dysregulate hematopoietic stem and progenitor cells
.
Blood Adv
.
2018
;
2
(
11
):
1259
-
1271
.
44.
Dai
P
,
Xiong
WC
,
Mei
L
.
Erbin inhibits RAF activation by disrupting the sur-8-Ras-Raf complex
.
J Biol Chem
.
2006
;
281
(
2
):
927
-
933
.
45.
Olivier
EN
,
Marenah
L
,
McCahill
A
,
Condie
A
,
Cowan
S
,
Mountford
JC
.
High-efficiency serum-free feeder-free erythroid differentiation of human pluripotent stem cells using small molecules
.
Stem Cells Transl Med
.
2016
;
5
(
10
):
1394
-
1405
.
46.
Qu
X
,
Zhang
S
,
Wang
S
, et al
.
TET2 deficiency leads to stem cell factor-dependent clonal expansion of dysfunctional erythroid progenitors
.
Blood
.
2018
;
132
(
22
):
2406
-
2417
.
47.
Mouly
E
,
Ghamlouch
H
,
Della-Valle
V
, et al
.
B-cell tumor development in Tet2-deficient mice
.
Blood Adv
.
2018
;
2
(
6
):
703
-
714
.
48.
Karczewski
KJ
,
Francioli
LC
,
Tiao
G
, et al
.
The mutational constraint spectrum quantified from variation in 141,456 humans
.
Nature
.
2020
;
581
:
434
-
443
.
49.
Genome Aggregation
Database
(gnomAD). TET2, tet methylcytosine dioxygenase 2. Available at https://gnomad.broadinstitute.org/gene/ENSG00000168769?dataset=gnomad_r2_1. Accessed 24 February 2020.
50.
Duployez
N
,
Goursaud
L
,
Fenwarth
L
, et al
.
Familial myeloid malignancies with germline TET2 mutation
.
Leukemia
.
2020
;
34
(
5
):
1450
-
1453
.
51.
Karner
K
,
George
TI
,
Patel
JL
.
Current aspects of clonal hematopoiesis: implications for clinical diagnosis
.
Ann Lab Med
.
2019
;
39
(
6
):
509
-
514
.
52.
Nakatsukasa
H
,
Oda
M
,
Yin
J
, et al
.
Loss of TET proteins in regulatory T cells promotes abnormal proliferation, Foxp3 destabilization and IL-17 expression
.
Int Immunol
.
2019
;
31
(
5
):
335
-
347
.
53.
Schoeler
K
,
Aufschnaiter
A
,
Messner
S
, et al
.
TET enzymes control antibody production and shape the mutational landscape in germinal centre B cells
.
FEBS J
.
2019
;
286
(
18
):
3566
-
3581
.
54.
Ichiyama
K
,
Chen
T
,
Wang
X
, et al
.
The methylcytosine dioxygenase Tet2 promotes DNA demethylation and activation of cytokine gene expression in T cells [published correction appears in Immunity. 2015;42(6):1214]
.
Immunity
.
2015
;
42
(
4
):
613
-
626
.
55.
Yue
X
,
Lio
CJ
,
Samaniego-Castruita
D
,
Li
X
,
Rao
A
.
Loss of TET2 and TET3 in regulatory T cells unleashes effector function
.
Nat Commun
.
2019
;
10
(
1
):
2011
.
56.
Lian
H
,
Li
WB
,
Jin
WL
.
The emerging insights into catalytic or non-catalytic roles of TET proteins in tumors and neural development
.
Oncotarget
.
2016
;
7
(
39
):
64512
-
64525
.
57.
Ito
K
,
Lee
J
,
Chrysanthou
S
, et al
.
Non-catalytic roles of Tet2 are essential to regulate hematopoietic stem and progenitor cell homeostasis
.
Cell Rep
.
2019
;
28
(
10
):
2480
-
2490.e4
.
58.
Fraietta
JA
,
Nobles
CL
,
Sammons
MA
, et al
.
Disruption of TET2 promotes the therapeutic efficacy of CD19-targeted T cells
.
Nature
.
2018
;
558
(
7709
):
307
-
312
.
59.
Carty
SA
,
Gohil
M
,
Banks
LB
, et al
.
The loss of TET2 promotes CD8+ T cell memory differentiation
.
J Immunol
.
2018
;
200
(
1
):
82
-
91
.
60.
Reimer
M
Jr.
,
Pulakanti
K
,
Shi
L
, et al
.
Deletion of Tet proteins results in quantitative disparities during ESC differentiation partially attributable to alterations in gene expression
.
BMC Dev Biol
.
2019
;
19
(
1
):
16
.
61.
Langlois
T
,
da Costa Reis Monte-Mor
B
,
Lenglet
G
, et al
.
TET2 deficiency inhibits mesoderm and hematopoietic differentiation in human embryonic stem cells
.
Stem Cells
.
2014
;
32
(
8
):
2084
-
2097
.
You do not currently have access to this content.

Sign in via your Institution

Sign In