Key Points

  • 14-3-3ζ synergizes c-Src to β3-integrin, and forms the 14-3-3ζ–c-Src–integrin-β3 complex during platelet activation.

  • Interference with the formation of the complex abolishes platelet outside-in signaling and suppresses thrombosis without causing bleeding.

Abstract

Several adaptor molecules bind to cytoplasmic tails of β-integrins and facilitate bidirectional signaling, which is critical in thrombosis and hemostasis. Interfering with integrin-adaptor interactions spatially or temporally to inhibit thrombosis without affecting hemostasis is an attractive strategy for the development of safe antithrombotic drugs. We show for the first time that the 14-3-3ζ–c-Src–integrin-β3 complex is formed during platelet activation. 14-3-3ζ–c-Src interaction is mediated by the -PIRLGLALNFSVFYYE- fragment (PE16) on the 14-3-3ζ and SH2-domain on c-Src, whereas the 14-3-3ζ–integrin-β3 interaction is mediated by the -ESKVFYLKMKGDYYRYL- fragment (EL17) on the 14-3-3ζ and -KEATSTF- fragment (KF7) on the β3-integrin cytoplasmic tail. The EL17-motif inhibitor, or KF7 peptide, interferes with the formation of the 14-3-3ζ–c-Src–integrin-β3 complex and selectively inhibits β3 outside-in signaling without affecting the integrin-fibrinogen interaction, which suppresses thrombosis without causing significant bleeding. This study characterized a previously unidentified 14-3-3ζ–c-Src–integrin-β3 complex in platelets and provided a novel strategy for the development of safe and effective antithrombotic treatments.

REFERENCES

1.
De Caterina
R
.
Inhibiting thrombosis without causing bleeding: can EP3 blockers fulfil the dream?
Cardiovasc Res
.
2014
;
101
(
3
):
335
-
338
.
2.
Adair
BD
,
Alonso
JL
,
van Agthoven
J
, et al
.
Structure-guided design of pure orthosteric inhibitors of αIIbβ3 that prevent thrombosis but preserve hemostasis
.
Nat Commun
.
2020
;
11
(
1
):
398
.
3.
Coller
BS
,
Shattil
SJ
.
The GPIIb/IIIa (integrin alphaIIbbeta3) odyssey: a technology-driven saga of a receptor with twists, turns, and even a bend
.
Blood
.
2008
;
112
(
8
):
3011
-
3025
.
4.
Li
Z
,
Delaney
MK
,
O’Brien
KA
,
Du
X
.
Signaling during platelet adhesion and activation
.
Arterioscler Thromb Vasc Biol
.
2010
;
30
(
12
):
2341
-
2349
.
5.
Ni
H
,
Freedman
J
.
Platelets in hemostasis and thrombosis: role of integrins and their ligands
.
Transfus Apheresis Sci
.
2003
;
28
(
3
):
257
-
264
.
6.
Moebius
J
,
Zahedi
RP
,
Lewandrowski
U
,
Berger
C
,
Walter
U
,
Sickmann
A
.
The human platelet membrane proteome reveals several new potential membrane proteins
.
Mol Cell Proteomics
.
2005
;
4
(
11
):
1754
-
1761
.
7.
Du
XP
,
Plow
EF
,
Frelinger
AL
III
,
O’Toole
TE
,
Loftus
JC
,
Ginsberg
MH
.
Ligands “activate” integrin α IIb β 3 (platelet GPIIb-IIIa)
.
Cell
.
1991
;
65
(
3
):
409
-
416
.
8.
Yang
H
,
Reheman
A
,
Chen
P
, et al
.
Fibrinogen and von Willebrand factor-independent platelet aggregation in vitro and in vivo
.
J Thromb Haemost
.
2006
;
4
(
10
):
2230
-
2237
.
9.
Wang
Y
,
Gallant
RC
,
Ni
H
.
Extracellular matrix proteins in the regulation of thrombus formation
.
Curr Opin Hematol
.
2016
;
23
(
3
):
280
-
287
.
10.
Plow
EF
.
Vitronectin: back into the spotlight
.
J Thromb Haemost
.
2005
;
3
(
5
):
873
-
874
.
11.
Ni
H
,
Yuen
PS
,
Papalia
JM
, et al
.
Plasma fibronectin promotes thrombus growth and stability in injured arterioles
.
Proc Natl Acad Sci USA
.
2003
;
100
(
5
):
2415
-
2419
.
12.
Reheman
A
,
Gross
P
,
Yang
H
, et al
.
Vitronectin stabilizes thrombi and vessel occlusion but plays a dual role in platelet aggregation
.
J Thromb Haemost
.
2005
;
3
(
5
):
875
-
883
.
13.
Hou
Y
,
Carrim
N
,
Wang
Y
,
Gallant
RC
,
Marshall
A
,
Ni
H
.
Platelets in hemostasis and thrombosis: novel mechanisms of fibrinogen-independent platelet aggregation and fibronectin-mediated protein wave of hemostasis
.
J Biomed Res
.
2015
;
29
(
6
):
437
-
444
.
14.
Legate
KR
,
Fässler
R
.
Mechanisms that regulate adaptor binding to beta-integrin cytoplasmic tails
.
J Cell Sci
.
2009
;
122
(
pt 2
):
187
-
198
.
15.
Estevez
B
,
Du
X
.
New Concepts and Mechanisms of Platelet Activation Signaling
.
Physiology (Bethesda)
.
2017
;
32
(
2
):
162
-
177
.
16.
Hynes
RO
.
Integrins: bidirectional, allosteric signaling machines
.
Cell
.
2002
;
110
(
6
):
673
-
687
.
17.
Moissoglu
K
,
Schwartz
MA
.
Integrin signalling in directed cell migration
.
Biol Cell
.
2006
;
98
(
9
):
547
-
555
.
18.
Shen
B
,
Zhao
X
,
O’Brien
KA
, et al
.
A directional switch of integrin signalling and a new anti-thrombotic strategy
.
Nature
.
2013
;
503
(
7474
):
131
-
135
.
19.
Tadokoro
S
,
Shattil
SJ
,
Eto
K
, et al
.
Talin binding to integrin beta tails: a final common step in integrin activation
.
Science
.
2003
;
302
(
5642
):
103
-
106
.
20.
Ye
F
,
Kim
C
,
Ginsberg
MH
.
Molecular mechanism of inside-out integrin regulation
.
J Thromb Haemost
.
2011
;
9
(
suppl 1
):
20
-
25
.
21.
Gong
H
,
Shen
B
,
Flevaris
P
, et al
.
G protein subunit Galpha13 binds to integrin alphaIIbbeta3 and mediates integrin “outside-in” signaling
.
Science
.
2010
;
327
(
5963
):
340
-
343
.
22.
Shen
B
,
Delaney
MK
,
Du
X
.
Inside-out, outside-in, and inside-outside-in: G protein signaling in integrin-mediated cell adhesion, spreading, and retraction
.
Curr Opin Cell Biol
.
2012
;
24
(
5
):
600
-
606
.
23.
Xu
M
,
Li
J
,
Neves
MAD
, et al
.
GPIbα is required for platelet-mediated hepatic thrombopoietin generation
.
Blood
.
2018
;
132
(
6
):
622
-
634
.
24.
Zhang
Z
,
Gao
L
,
Shen
C
,
Rong
M
,
Yan
X
,
Lai
R
.
A potent anti-thrombosis peptide (vasotab TY) from horsefly salivary glands
.
Int J Biochem Cell Biol
.
2014
;
54
:
83
-
88
.
25.
Diller
DJ
,
Li
R
.
Kinases, homology models, and high throughput docking
.
J Med Chem
.
2003
;
46
(
22
):
4638
-
4647
.
26.
Su
X
,
Mi
J
,
Yan
J
, et al
.
RGT, a synthetic peptide corresponding to the integrin beta 3 cytoplasmic C-terminal sequence, selectively inhibits outside-in signaling in human platelets by disrupting the interaction of integrin alpha IIb beta 3 with Src kinase
.
Blood
.
2008
;
112
(
3
):
592
-
602
.
27.
Xu
XR
,
Wang
Y
,
Adili
R
, et al
.
Apolipoprotein A-IV binds αIIbβ3 integrin and inhibits thrombosis
.
Nat Commun
.
2018
;
9
(
1
):
3608
.
28.
Yang
H
,
Lang
S
,
Zhai
Z
, et al
.
Fibrinogen is required for maintenance of platelet intracellular and cell-surface P-selectin expression
.
Blood
.
2009
;
114
(
2
):
425
-
436
.
29.
Jin
L
,
Guo
X
,
Shen
C
, et al
.
Salivary factor LTRIN from Aedes aegypti facilitates the transmission of Zika virus by interfering with the lymphotoxin-β receptor
.
Nat Immunol
.
2018
;
19
(
4
):
342
-
353
.
30.
Tilly
P
,
Charles
AL
,
Ludwig
S
, et al
.
Blocking the EP3 receptor for PGE2 with DG-041 decreases thrombosis without impairing haemostatic competence
.
Cardiovasc Res
.
2014
;
101
(
3
):
482
-
491
.
31.
Arias-Salgado
EG
,
Lizano
S
,
Sarkar
S
,
Brugge
JS
,
Ginsberg
MH
,
Shattil
SJ
.
Src kinase activation by direct interaction with the integrin beta cytoplasmic domain
.
Proc Natl Acad Sci USA
.
2003
;
100
(
23
):
13298
-
13302
.
32.
Fagerholm
SC
,
Hilden
TJ
,
Nurmi
SM
,
Gahmberg
CG
.
Specific integrin alpha and beta chain phosphorylations regulate LFA-1 activation through affinity-dependent and -independent mechanisms
.
J Cell Biol
.
2005
;
171
(
4
):
705
-
715
.
33.
Sharma
CP
,
Ezzell
RM
,
Arnaout
MA
.
Direct interaction of filamin (ABP-280) with the beta 2-integrin subunit CD18
.
J Immunol
.
1995
;
154
(
7
):
3461
-
3470
.
34.
Flevaris
P
,
Stojanovic
A
,
Gong
H
,
Chishti
A
,
Welch
E
,
Du
X
.
A molecular switch that controls cell spreading and retraction
.
J Cell Biol
.
2007
;
179
(
3
):
553
-
565
.
35.
Woodcock
JM
,
Murphy
J
,
Stomski
FC
,
Berndt
MC
,
Lopez
AF
.
The dimeric versus monomeric status of 14-3-3zeta is controlled by phosphorylation of Ser58 at the dimer interface
.
J Biol Chem
.
2003
;
278
(
38
):
36323
-
36327
.
36.
Fu
H
,
Subramanian
RR
,
Masters
SC
.
14-3-3 proteins: structure, function, and regulation
.
Annu Rev Pharmacol Toxicol
.
2000
;
40
(
1
):
617
-
647
.
37.
Wu
Y
,
Span
LM
,
Nygren
P
, et al
.
The Tyrosine Kinase c-Src Specifically Binds to the Active Integrin αIIbβ3 to Initiate Outside-in Signaling in Platelets
.
J Biol Chem
.
2015
;
290
(
25
):
15825
-
15834
.
38.
Yin
H
,
Slusky
JS
,
Berger
BW
, et al
.
Computational design of peptides that target transmembrane helices
.
Science
.
2007
;
315
(
5820
):
1817
-
1822
.
39.
Fong
KP
,
Zhu
H
,
Span
LM
, et al
.
Directly Activating the Integrin αIIbβ3 Initiates Outside-In Signaling by Causing αIIbβ3 Clustering
.
J Biol Chem
.
2016
;
291
(
22
):
11706
-
11716
.
40.
Du
X
,
Fox
JE
,
Pei
S
.
Identification of a binding sequence for the 14-3-3 protein within the cytoplasmic domain of the adhesion receptor, platelet glycoprotein Ib alpha
.
J Biol Chem
.
1996
;
271
(
13
):
7362
-
7367
.
41.
López
JA
,
Dong
J-F
.
Structure and function of the glycoprotein Ib-IX-V complex
.
Curr Opin Hematol
.
1997
;
4
(
5
):
323
-
329
.
42.
Dai
K
,
Bodnar
R
,
Berndt
MC
,
Du
X
.
A critical role for 14-3-3zeta protein in regulating the VWF binding function of platelet glycoprotein Ib-IX and its therapeutic implications
.
Blood
.
2005
;
106
(
6
):
1975
-
1981
.
43.
Chen
Y
,
Ruggeri
ZM
,
Du
X
.
14-3-3 proteins in platelet biology and glycoprotein Ib-IX signaling
.
Blood
.
2018
;
131
(
22
):
2436
-
2448
.
44.
Yuan
Y
,
Zhang
W
,
Yan
R
, et al
.
Identification of a novel 14-3-3zeta binding site within the cytoplasmic domain of platelet glycoprotein Ibalpha that plays a key role in regulating the von Willebrand factor binding function of glycoprotein Ib-IX
.
Circ Res
.
2009
;
105
(
12
):
1177
-
1185
.
45.
McCarty
OJ
,
Larson
MK
,
Auger
JM
, et al
.
Rac1 is essential for platelet lamellipodia formation and aggregate stability under flow
.
J Biol Chem
.
2005
;
280
(
47
):
39474
-
39484
.
46.
O’Brien
KA
,
Gartner
TK
,
Hay
N
,
Du
X
.
ADP-stimulated activation of Akt during integrin outside-in signaling promotes platelet spreading by inhibiting glycogen synthase kinase-3β
.
Arterioscler Thromb Vasc Biol
.
2012
;
32
(
9
):
2232
-
2240
.
47.
Moser
M
,
Nieswandt
B
,
Ussar
S
,
Pozgajova
M
,
Fässler
R
.
Kindlin-3 is essential for integrin activation and platelet aggregation
.
Nat Med
.
2008
;
14
(
3
):
325
-
330
.
48.
Ono
A
,
Westein
E
,
Hsiao
S
, et al
.
Identification of a fibrin-independent platelet contractile mechanism regulating primary hemostasis and thrombus growth
.
Blood
.
2008
;
112
(
1
):
90
-
99
.
49.
Pleines
I
,
Hagedorn
I
,
Gupta
S
, et al
.
Megakaryocyte-specific RhoA deficiency causes macrothrombocytopenia and defective platelet activation in hemostasis and thrombosis
.
Blood
.
2012
;
119
(
4
):
1054
-
1063
.
50.
Zaidel-Bar
R
,
Itzkovitz
S
,
Ma’ayan
A
,
Iyengar
R
,
Geiger
B
.
Functional atlas of the integrin adhesome
.
Nat Cell Biol
.
2007
;
9
(
8
):
858
-
867
.
51.
Valmu
L
,
Fagerholm
S
,
Suila
H
,
Gahmberg
CG
.
The cytoskeletal association of CD11/CD18 leukocyte integrins in phorbol ester-activated cells correlates with CD18 phosphorylation
.
Eur J Immunol
.
1999
;
29
(
7
):
2107
-
2118
.
52.
Arias-Salgado
EG
,
Lizano
S
,
Sarkar
S
,
Brugge
JS
,
Ginsberg
MH
,
Shattil
SJ
.
Src kinase activation by direct interaction with the integrin beta cytoplasmic domain
.
Proc Natl Acad Sci USA
.
2003
;
100
(
23
):
13298
-
13302
.
53.
Zaidel-Bar
R
,
Ballestrem
C
,
Kam
Z
,
Geiger
B
.
Early molecular events in the assembly of matrix adhesions at the leading edge of migrating cells
.
J Cell Sci
.
2003
;
116
(
pt 22
):
4605
-
4613
.
54.
Zaidel-Bar
R
,
Cohen
M
,
Addadi
L
,
Geiger
B
.
Hierarchical assembly of cell-matrix adhesion complexes
.
Biochem Soc Trans
.
2004
;
32
(
pt 3
):
416
-
420
.
55.
Zamir
E
,
Katz
BZ
,
Aota
S
,
Yamada
KM
,
Geiger
B
,
Kam
Z
.
Molecular diversity of cell-matrix adhesions
.
J Cell Sci
.
1999
;
112
(
pt 11
):
1655
-
1669
.
56.
Laukaitis
CM
,
Webb
DJ
,
Donais
K
,
Horwitz
AF
.
Differential dynamics of alpha 5 integrin, paxillin, and alpha-actinin during formation and disassembly of adhesions in migrating cells
.
J Cell Biol
.
2001
;
153
(
7
):
1427
-
1440
.
57.
Xi
X
,
Bodnar
RJ
,
Li
Z
,
Lam
SC
,
Du
X
.
Critical roles for the COOH-terminal NITY and RGT sequences of the integrin beta3 cytoplasmic domain in inside-out and outside-in signaling
.
J Cell Biol
.
2003
;
162
(
2
):
329
-
339
.
58.
Aghazadeh
Y
,
Papadopoulos
V
.
The role of the 14-3-3 protein family in health, disease, and drug development
.
Drug Discov Today
.
2016
;
21
(
2
):
278
-
287
.
59.
Wheeler-Jones
CP
,
Learmonth
MP
,
Martin
H
,
Aitken
A
.
Identification of 14-3-3 proteins in human platelets: effects of synthetic peptides on protein kinase C activation
.
Biochem J
.
1996
;
315
(
pt 1
):
41
-
47
.
60.
Bialkowska
K
,
Zaffran
Y
,
Meyer
SC
,
Fox
JE
.
14-3-3 zeta mediates integrin-induced activation of Cdc42 and Rac. Platelet glycoprotein Ib-IX regulates integrin-induced signaling by sequestering 14-3-3 zeta
.
J Biol Chem
.
2003
;
278
(
35
):
33342
-
33350
.
61.
Senis
YA
,
Mazharian
A
,
Mori
J
.
Src family kinases: at the forefront of platelet activation
.
Blood
.
2014
;
124
(
13
):
2013
-
2024
.
62.
Golden
A
,
Nemeth
SP
,
Brugge
JS
.
Blood platelets express high levels of the pp60c-src-specific tyrosine kinase activity
.
Proc Natl Acad Sci USA
.
1986
;
83
(
4
):
852
-
856
.
63.
Shattil
SJ
,
Kim
C
,
Ginsberg
MH
.
The final steps of integrin activation: the end game
.
Nat Rev Mol Cell Biol
.
2010
;
11
(
4
):
288
-
300
.
64.
Yin
H
,
Liu
J
,
Li
Z
,
Berndt
MC
,
Lowell
CA
,
Du
X
.
Src family tyrosine kinase Lyn mediates VWF/GPIb-IX-induced platelet activation via the cGMP signaling pathway
.
Blood
.
2008
;
112
(
4
):
1139
-
1146
.
65.
Quintás-Cardama
A
,
Kantarjian
H
,
Ravandi
F
, et al
.
Bleeding diathesis in patients with chronic myelogenous leukemia receiving dasatinib therapy
.
Cancer
.
2009
;
115
(
11
):
2482
-
2490
.
66.
Gratacap
MP
,
Martin
V
,
Valéra
MC
, et al
.
The new tyrosine-kinase inhibitor and anticancer drug dasatinib reversibly affects platelet activation in vitro and in vivo
.
Blood
.
2009
;
114
(
9
):
1884
-
1892
.
67.
Erkut
M
,
Erkut
N
,
Ersoz
S
,
Arslan
M
,
Sonmez
M
.
A case of acute colitis with severe rectal bleeding in a patient with chronic myeloid leukemia after dasatinib use
.
Acta Haematol
.
2010
;
123
(
4
):
205
-
206
.
68.
Kostos
L
,
Burbury
K
,
Srivastava
G
,
Prince
HM
.
Gastrointestinal bleeding in a chronic myeloid leukaemia patient precipitated by dasatinib-induced platelet dysfunction: Case report
.
Platelets
.
2015
;
26
(
8
):
809
-
811
.
69.
Ni
H
,
Denis
CV
,
Subbarao
S
, et al
.
Persistence of platelet thrombus formation in arterioles of mice lacking both von Willebrand factor and fibrinogen
.
J Clin Invest
.
2000
;
106
(
3
):
385
-
392
.
70.
Leebeek
FW
,
Eikenboom
JC
.
Von Willebrand’s disease
.
N Engl J Med
.
2016
;
375
(
21
):
2067
-
2080
.
71.
Kageyama
S
,
Yamamoto
H
,
Nagano
M
,
Arisaka
H
,
Kayahara
T
,
Yoshimoto
R
.
Anti-thrombotic effects and bleeding risk of AJvW-2, a monoclonal antibody against human von Willebrand factor
.
Br J Pharmacol
.
1997
;
122
(
1
):
165
-
171
.
72.
Lei
X
,
Reheman
A
,
Hou
Y
, et al
.
Anfibatide, a novel GPIb complex antagonist, inhibits platelet adhesion and thrombus formation in vitro and in vivo in murine models of thrombosis
.
Thromb Haemost
.
2014
;
111
(
2
):
279
-
289
.
73.
Wu
D
,
Meiring
M
,
Kotze
HF
,
Deckmyn
H
,
Cauwenberghs
N
.
Inhibition of platelet glycoprotein Ib, glycoprotein IIb/IIIa, or both by monoclonal antibodies prevents arterial thrombosis in baboons
.
Arterioscler Thromb Vasc Biol
.
2002
;
22
(
2
):
323
-
328
.
74.
Xu
X
,
Wang
H-J
,
Murphy
PA
,
Cook
L
,
Hendrich
S
.
Daidzein is a more bioavailable soymilk isoflavone than is genistein in adult women
.
J Nutr
.
1994
;
124
(
6
):
825
-
832
.
75.
Moon
YJ
,
Sagawa
K
,
Frederick
K
,
Zhang
S
,
Morris
ME
.
Pharmacokinetics and bioavailability of the isoflavone biochanin A in rats
.
AAPS J
.
2006
;
8
(
3
):
E433
-
E442
.
76.
Hendrich
S
,
Wang
G-J
,
Lin
H-K
, et al
. Isoflavone metabolism and bioavailability. In:
Pappas
AM
, ed.
Antioxidant status, diet, nutrition and health
,
1999
:
211
-
230
.
77.
Coller
BS
,
Folts
JD
,
Smith
SR
,
Scudder
LE
,
Jordan
R
.
Abolition of in vivo platelet thrombus formation in primates with monoclonal antibodies to the platelet GPIIb/IIIa receptor. Correlation with bleeding time, platelet aggregation, and blockade of GPIIb/IIIa receptors
.
Circulation
.
1989
;
80
(
6
):
1766
-
1774
.
78.
Akbar
H
,
Kim
J
,
Funk
K
, et al
.
Genetic and pharmacologic evidence that Rac1 GTPase is involved in regulation of platelet secretion and aggregation
.
J Thromb Haemost
.
2007
;
5
(
8
):
1747
-
1755
.
You do not currently have access to this content.

Sign in via your Institution

Sign In