Key Points

  • FasL-mediated apoptosis plays an important role in Treg depletion and subpopulation imbalance in AA, leading to immune dysregulation.

  • Remaining AA Tregs become FasL resistant in response to high concentration of IL-2 and are functional in an inflammatory environment.

Abstract

Idiopathic aplastic anemia (AA) has 2 key characteristics: an autoimmune response against hematopoietic stem/progenitor cells and regulatory T-cells (Tregs) deficiency. We have previously demonstrated reduction in a specific subpopulation of Treg in AA, which predicts response to immunosuppression. The aims of the present study were to define mechanisms of Treg subpopulation imbalance and identify potential for therapeutic intervention. We have identified 2 mechanisms that lead to skewed Treg composition in AA: first, FasL-mediated apoptosis on ligand interaction; and, second, relative interleukin-2 (IL-2) deprivation. We have shown that IL-2 augmentation can overcome these mechanisms. Interestingly, when high concentrations of IL-2 were used for in vitro Treg expansion cultures, AA Tregs were able to expand. The expanded populations expressed a high level of p-BCL-2, which makes them resistant to apoptosis. Using a xenograft mouse model, the function and stability of expanded AA Tregs were tested. We have shown that these Tregs were able to suppress the macroscopic clinical features and tissue manifestations of T-cell–mediated graft-versus-host disease. These Tregs maintained their suppressive properties as well as their phenotype in a highly inflammatory environment. Our findings provide an insight into the mechanisms of Treg reduction in AA. We have identified novel targets with potential for therapeutic interventions. Supplementation of ex vivo expansion cultures of Tregs with high concentrations of IL-2 or delivery of IL-2 directly to patients could improve clinical outcomes in addition to standard immunosuppressive therapy.

REFERENCES

1.
Young
NS
,
Calado
RT
,
Scheinberg
P
.
Current concepts in the pathophysiology and treatment of aplastic anemia
.
Blood
.
2006
;
108
(
8
):
2509
-
2519
.
2.
Guinan
EC
.
Diagnosis and management of aplastic anemia
.
Hematology Am Soc Hematol Educ Program
.
2011
;
2011
:
76
-
81
.
3.
Young
NS
,
Bacigalupo
A
,
Marsh
JCW
.
Aplastic anemia: pathophysiology and treatment
.
Biol Blood Marrow Transplant
.
2010
;
16
(
1 suppl
):
S119
-
S125
.
4.
Kordasti
S
,
Marsh
J
,
Al-Khan
S
, et al
.
Functional characterization of CD4+ T cells in aplastic anemia
.
Blood
.
2012
;
119
(
9
):
2033
-
2043
.
5.
Young
NS
.
Pathophysiologic mechanisms in acquired aplastic anemia
.
Hematology Am Soc Hematol Educ Program
.
2006
;
2006
:
72
-
77
.
6.
Chen
J
,
Lipovsky
K
,
Ellison
FM
,
Calado
RT
,
Young
NS
.
Bystander destruction of hematopoietic progenitor and stem cells in a mouse model of infusion-induced bone marrow failure
.
Blood
.
2004
;
104
(
6
):
1671
-
1678
.
7.
Liu
CY
,
Fu
R
,
Wang
HQ
, et al
.
Fas/FasL in the immune pathogenesis of severe aplastic anemia
.
Genet Mol Res
.
2014
;
13
(
2
):
4083
-
4088
.
8.
Bacigalupo
A
.
How I treat acquired aplastic anemia
.
Blood
.
2017
;
129
(
11
):
1428
-
1436
.
9.
Scheinberg
P
,
Young
NS
.
How I treat acquired aplastic anemia
.
Blood
.
2012
;
120
(
6
):
1185
-
1196
.
10.
Marsh
JC
,
Gupta
V
,
Lim
Z
, et al
.
Alemtuzumab with fludarabine and cyclophosphamide reduces chronic graft-versus-host disease after allogeneic stem cell transplantation for acquired aplastic anemia
.
Blood
.
2011
;
118
(
8
):
2351
-
2357
.
11.
Rosenfeld
S
,
Follmann
D
,
Nunez
O
,
Young
NS
.
Antithymocyte globulin and cyclosporine for severe aplastic anemia: association between hematologic response and long-term outcome
.
JAMA
.
2003
;
289
(
9
):
1130
-
1135
.
12.
Marsh
JC
,
Bacigalupo
A
,
Schrezenmeier
H
, et al;
European Blood and Marrow Transplant Group Severe Aplastic Anaemia Working Party
.
Prospective study of rabbit antithymocyte globulin and cyclosporine for aplastic anemia from the EBMT Severe Aplastic Anaemia Working Party [published correction appears in Blood. 2013;121(25):5104]
.
Blood
.
2012
;
119
(
23
):
5391
-
5396
.
13.
Passweg
JR
,
Marsh
JCW
.
Aplastic anemia: first-line treatment by immunosuppression and sibling marrow transplantation
.
Hematology Am Soc Hematol Educ Program
.
2010
;
2010
:
36
-
42
.
14.
Townsley
DM
,
Scheinberg
P
,
Winkler
T
, et al
.
Eltrombopag added to standard immunosuppression for aplastic anemia
.
N Engl J Med
.
2017
;
376
(
16
):
1540
-
1550
.
15.
Josefowicz
SZ
,
Lu
L-F
,
Rudensky
AY
.
Regulatory T cells: mechanisms of differentiation and function
.
Annu Rev Immunol
.
2012
;
30
(
1
):
531
-
564
.
16.
Pellerin
L
,
Jenks
JA
,
Bégin
P
,
Bacchetta
R
,
Nadeau
KC
.
Regulatory T cells and their roles in immune dysregulation and allergy
.
Immunol Res
.
2014
;
58
(
2-3
):
358
-
368
.
17.
Solomou
EE
,
Rezvani
K
,
Mielke
S
, et al
.
Deficient CD4+ CD25+ FOXP3+ T regulatory cells in acquired aplastic anemia
.
Blood
.
2007
;
110
(
5
):
1603
-
1606
.
18.
Shi
J
,
Ge
M
,
Lu
S
, et al
.
Intrinsic impairment of CD4(+)CD25(+) regulatory T cells in acquired aplastic anemia
.
Blood
.
2012
;
120
(
8
):
1624
-
1632
.
19.
Yan
L
,
Fu
R
,
Liu
H
, et al
.
Abnormal quantity and function of regulatory T cells in peripheral blood of patients with severe aplastic anemia
.
Cell Immunol
.
2015
;
296
(
2
):
95
-
105
.
20.
Kordasti
S
,
Costantini
B
,
Seidl
T
, et al
.
Deep phenotyping of Tregs identifies an immune signature for idiopathic aplastic anemia and predicts response to treatment
.
Blood
.
2016
;
128
(
9
):
1193
-
1205
.
21.
Scottà
C
,
Esposito
M
,
Fazekasova
H
, et al
.
Differential effects of rapamycin and retinoic acid on expansion, stability and suppressive qualities of human CD4(+)CD25(+)FOXP3(+) T regulatory cell subpopulations
.
Haematologica
.
2013
;
98
(
8
):
1291
-
1299
.
22.
Toker
A
,
Engelbert
D
,
Garg
G
, et al
.
Active demethylation of the Foxp3 locus leads to the generation of stable regulatory T cells within the thymus
.
J Immunol
.
2013
;
190
(
7
):
3180
-
3188
.
23.
Chen
Z
,
Barbi
J
,
Bu
S
, et al
.
The ubiquitin ligase Stub1 negatively modulates regulatory T cell suppressive activity by promoting degradation of the transcription factor Foxp3
.
Immunity
.
2013
;
39
(
2
):
272
-
285
.
24.
Gao
Y
,
Tang
J
,
Chen
W
, et al
.
Inflammation negatively regulates FOXP3 and regulatory T-cell function via DBC1
.
Proc Natl Acad Sci USA
.
2015
;
112
(
25
):
E3246
-
E3254
.
25.
van Loosdregt
J
,
Fleskens
V
,
Fu
J
, et al
.
Stabilization of the transcription factor Foxp3 by the deubiquitinase USP7 increases Treg-cell-suppressive capacity
.
Immunity
.
2013
;
39
(
2
):
259
-
271
.
26.
Bailey-Bucktrout
SL
,
Martinez-Llordella
M
,
Zhou
X
, et al
.
Self-antigen-driven activation induces instability of regulatory T cells during an inflammatory autoimmune response
.
Immunity
.
2013
;
39
(
5
):
949
-
962
.
27.
Feng
Y
,
Arvey
A
,
Chinen
T
,
van der Veeken
J
,
Gasteiger
G
,
Rudensky
AY
.
Control of the inheritance of regulatory T cell identity by a cis element in the Foxp3 locus
.
Cell
.
2014
;
158
(
4
):
749
-
763
.
28.
Kitani
A
,
Xu
L
.
Regulatory T cells and the induction of IL-17
.
Mucosal Immunol
.
2008
;
1
(
S1 suppl 1
):
S43
-
S46
.
29.
Xu
L
,
Kitani
A
,
Fuss
I
,
Strober
W
.
Cutting edge: regulatory T cells induce CD4+CD25-Foxp3- T cells or are self-induced to become Th17 cells in the absence of exogenous TGF-β
.
J Immunol
.
2007
;
178
(
11
):
6725
-
6729
.
30.
Billerbeck
E
,
Barry
WT
,
Mu
K
,
Dorner
M
,
Rice
CM
,
Ploss
A
.
Development of human CD4+FoxP3+ regulatory T cells in human stem cell factor-, granulocyte-macrophage colony-stimulating factor-, and interleukin-3-expressing NOD-SCID IL2Rγ(null) humanized mice
.
Blood
.
2011
;
117
(
11
):
3076
-
3086
.
31.
Omokaro
SO
,
Desierto
MJ
,
Eckhaus
MA
,
Ellison
FM
,
Chen
J
,
Young
NS
.
Lymphocytes with aberrant expression of Fas or Fas ligand attenuate immune bone marrow failure in a mouse model
.
J Immunol
.
2009
;
182
(
6
):
3414
-
3422
.
32.
Maciejewski
J
,
Selleri
C
,
Anderson
S
,
Young
NS
.
Fas antigen expression on CD34+ human marrow cells is induced by interferon gamma and tumor necrosis factor alpha and potentiates cytokine-mediated hematopoietic suppression in vitro
.
Blood
.
1995
;
85
(
11
):
3183
-
3190
.
33.
Maciejewski
JP
,
Selleri
C
,
Sato
T
,
Anderson
S
,
Young
NS
.
Increased expression of Fas antigen on bone marrow CD34+ cells of patients with aplastic anaemia
.
Br J Haematol
.
1995
;
91
(
1
):
245
-
252
.
34.
Luther-Wyrsch
A
,
Nissen
C
,
Wodnar-Filipowicz
A
.
Intracellular Fas ligand is elevated in T lymphocytes in severe aplastic anaemia
.
Br J Haematol
.
2001
;
114
(
4
):
884
-
890
.
35.
Li
W
,
Fu
J
,
Wang
F
,
Yu
G
,
Wang
Y
,
Zhang
X
.
Distinct overexpression of Fas ligand on T lymphocytes in aplastic anemia
.
Cell Mol Immunol
.
2004
;
1
(
2
):
142
-
147
.
36.
Malek
TR
.
The biology of interleukin-2
.
Annu Rev Immunol
.
2008
;
26
(
1
):
453
-
479
.
37.
Boyman
O
,
Sprent
J
.
The role of interleukin-2 during homeostasis and activation of the immune system
.
Nat Rev Immunol
.
2012
;
12
(
3
):
180
-
190
.
38.
Liao
W
,
Lin
J-X
,
Leonard
WJ
.
Interleukin-2 at the crossroads of effector responses, tolerance, and immunotherapy
.
Immunity
.
2013
;
38
(
1
):
13
-
25
.
39.
Cao
T
,
Soto
A
,
Zhou
W
, et al
.
Ex vivo expanded human CD4+CD25+Foxp3+ regulatory T cells prevent lethal xenogenic graft versus host disease (GVHD)
.
Cell Immunol
.
2009
;
258
(
1
):
65
-
71
.
40.
Trenado
A
,
Sudres
M
,
Tang
Q
, et al
.
Ex vivo-expanded CD4+CD25+ immunoregulatory T cells prevent graft-versus-host-disease by inhibiting activation/differentiation of pathogenic T cells
.
J Immunol
.
2006
;
176
(
2
):
1266
-
1273
.
41.
Sagoo
P
,
Ali
N
,
Garg
G
,
Nestle
FO
,
Lechler
RI
,
Lombardi
G
.
Human regulatory T cells with alloantigen specificity are more potent inhibitors of alloimmune skin graft damage than polyclonal regulatory T cells
.
Sci Transl Med
.
2011
;
3
(
83
):
83ra42
.
42.
Romano
M
,
Tung
SL
,
Smyth
LA
,
Lombardi
G
.
Treg therapy in transplantation: a general overview
.
Transpl Int
.
2017
;
30
(
8
):
745
-
753
.
43.
Bluestone
JA
,
Buckner
JH
,
Fitch
M
, et al
.
Type 1 diabetes immunotherapy using polyclonal regulatory T cells
.
Sci Transl Med
.
2015
;
7
(
315
):
315ra189
.
44.
Marek-Trzonkowska
N
,
Myśliwiec
M
,
Dobyszuk
A
, et al
.
Therapy of type 1 diabetes with CD4(+)CD25(high)CD127-regulatory T cells prolongs survival of pancreatic islets—results of one year follow-up
.
Clin Immunol
.
2014
;
153
(
1
):
23
-
30
.
45.
Marek-Trzonkowska
N
,
Myśliwiec
M
,
Dobyszuk
A
, et al
.
Administration of CD4+CD25highCD127- regulatory T cells preserves β-cell function in type 1 diabetes in children
.
Diabetes Care
.
2012
;
35
(
9
):
1817
-
1820
.
46.
Scalapino
KJ
,
Tang
Q
,
Bluestone
JA
,
Bonyhadi
ML
,
Daikh
DI
.
Suppression of disease in New Zealand Black/New Zealand White lupus-prone mice by adoptive transfer of ex vivo expanded regulatory T cells
.
J Immunol
.
2006
;
177
(
3
):
1451
-
1459
.
47.
Weigert
O
,
von Spee
C
,
Undeutsch
R
,
Kloke
L
,
Humrich
JY
,
Riemekasten
G
.
CD4+Foxp3+ regulatory T cells prolong drug-induced disease remission in (NZBxNZW) F1 lupus mice
.
Arthritis Res Ther
.
2013
;
15
(
1
):
R35
.
48.
Desreumaux
P
,
Foussat
A
,
Allez
M
, et al
.
Safety and efficacy of antigen-specific regulatory T-cell therapy for patients with refractory Crohn’s disease
.
Gastroenterology
.
2012
;
143
(
5
):
1207
-
1217.e2
.
You do not currently have access to this content.

Sign in via your Institution

Sign In