Key Points

  • Transcriptomes cluster most AEL apart from other myeloid malignancies.

  • Alterations of AEL erythroid master regulators impair GATA1 activity and induce the disease in mice.

Abstract

Acute erythroleukemia (AEL or acute myeloid leukemia [AML]-M6) is a rare but aggressive hematologic malignancy. Previous studies showed that AEL leukemic cells often carry complex karyotypes and mutations in known AML-associated oncogenes. To better define the underlying molecular mechanisms driving the erythroid phenotype, we studied a series of 33 AEL samples representing 3 genetic AEL subgroups including TP53-mutated, epigenetic regulator-mutated (eg, DNMT3A, TET2, or IDH2), and undefined cases with low mutational burden. We established an erythroid vs myeloid transcriptome-based space in which, independently of the molecular subgroup, the majority of the AEL samples exhibited a unique mapping different from both non-M6 AML and myelodysplastic syndrome samples. Notably, >25% of AEL patients, including in the genetically undefined subgroup, showed aberrant expression of key transcriptional regulators, including SKI, ERG, and ETO2. Ectopic expression of these factors in murine erythroid progenitors blocked in vitro erythroid differentiation and led to immortalization associated with decreased chromatin accessibility at GATA1-binding sites and functional interference with GATA1 activity. In vivo models showed development of lethal erythroid, mixed erythroid/myeloid, or other malignancies depending on the cell population in which AEL-associated alterations were expressed. Collectively, our data indicate that AEL is a molecularly heterogeneous disease with an erythroid identity that results in part from the aberrant activity of key erythroid transcription factors in hematopoietic stem or progenitor cells.

REFERENCES

REFERENCES
1.
Hasserjian
RP
,
Zuo
Z
,
Garcia
C
, et al
.
Acute erythroid leukemia: a reassessment using criteria refined in the 2008 WHO classification
.
Blood
.
2010
;
115
(
10
):
1985
-
1992
.
2.
Wang
SA
,
Hasserjian
RP
.
Acute erythroleukemias, acute megakaryoblastic leukemias, and reactive mimics: a guide to a number of perplexing entities
.
Am J Clin Pathol
.
2015
;
144
(
1
):
44
-
60
.
3.
Boddu
P
,
Benton
CB
,
Wang
W
,
Borthakur
G
,
Khoury
JD
,
Pemmaraju
N
.
Erythroleukemia-historical perspectives and recent advances in diagnosis and management
.
Blood Rev
.
2018
;
32
(
2
):
96
-
105
.
4.
Arber
DA
,
Orazi
A
,
Hasserjian
R
, et al
.
The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia [published correction appears in Blood. 2016;128(3):462-463]
.
Blood
.
2016
;
127
(
20
):
2391
-
2405
.
5.
Arber
DA
.
Revisiting erythroleukemia
.
Curr Opin Hematol
.
2017
;
24
(
2
):
146
-
151
.
6.
Qiu
S
,
Jiang
E
,
Wei
H
, et al
.
An analysis of 97 previously diagnosed de novo adult acute erythroid leukemia patients following the 2016 revision to World Health Organization classification
.
BMC Cancer
.
2017
;
17
(
1
):
534
.
7.
Ley
TJ
,
Miller
C
,
Ding
L
, et al;
Cancer Genome Atlas Research Network
.
Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia
.
N Engl J Med
.
2013
;
368
(
22
):
2059
-
2074
.
8.
Papaemmanuil
E
,
Gerstung
M
,
Bullinger
L
, et al
.
Genomic classification and prognosis in acute myeloid leukemia
.
N Engl J Med
.
2016
;
374
(
23
):
2209
-
2221
.
9.
Grossmann
V
,
Bacher
U
,
Haferlach
C
, et al
.
Acute erythroid leukemia (AEL) can be separated into distinct prognostic subsets based on cytogenetic and molecular genetic characteristics
.
Leukemia
.
2013
;
27
(
9
):
1940
-
1943
.
10.
Cervera
N
,
Carbuccia
N
,
Garnier
S
, et al
.
Molecular characterization of acute erythroid leukemia (M6-AML) using targeted next-generation sequencing
.
Leukemia
.
2016
;
30
(
4
):
966
-
970
.
11.
Cervera
N
,
Carbuccia
N
,
Mozziconacci
M-J
, et al
.
Revisiting gene mutations and prognosis of ex-M6a-acute erythroid leukemia with regard to the new WHO classification
.
Blood Cancer J
.
2017
;
7
(
8
):
e594
.
12.
Ping
N
,
Sun
A
,
Song
Y
, et al
.
Exome sequencing identifies highly recurrent somatic GATA2 and CEBPA mutations in acute erythroid leukemia
.
Leukemia
.
2017
;
31
(
1
):
195
-
202
.
13.
Montalban-Bravo
G
,
Benton
CB
,
Wang
SA
, et al
.
More than 1 TP53 abnormality is a dominant characteristic of pure erythroid leukemia
.
Blood
.
2017
;
129
(
18
):
2584
-
2587
.
14.
Kerenyi
MA
,
Orkin
SH
.
Networking erythropoiesis
.
J Exp Med
.
2010
;
207
(
12
):
2537
-
2541
.
15.
Kuhrt
D
,
Wojchowski
DM
.
Emerging EPO and EPO receptor regulators and signal transducers
.
Blood
.
2015
;
125
(
23
):
3536
-
3541
.
16.
Valent
P
,
Büsche
G
,
Theurl
I
, et al
.
Normal and pathological erythropoiesis in adults: from gene regulation to targeted treatment concepts
.
Haematologica
.
2018
;
103
(
10
):
1593
-
1603
.
17.
Soler
E
,
Andrieu-Soler
C
,
de Boer
E
, et al
.
The genome-wide dynamics of the binding of Ldb1 complexes during erythroid differentiation
.
Genes Dev
.
2010
;
24
(
3
):
277
-
289
.
18.
Li
L
,
Freudenberg
J
,
Cui
K
, et al
.
Ldb1-nucleated transcription complexes function as primary mediators of global erythroid gene activation
.
Blood
.
2013
;
121
(
22
):
4575
-
4585
.
19.
Gillinder
KR
,
Tuckey
H
,
Bell
CC
, et al
.
Direct targets of pSTAT5 signalling in erythropoiesis
.
PLoS One
.
2017
;
12
(
7
):
e0180922
.
20.
Perreault
AA
,
Benton
ML
,
Koury
MJ
,
Brandt
SJ
,
Venters
BJ
.
Epo reprograms the epigenome of erythroid cells
.
Exp Hematol
.
2017
;
51
:
47
-
62
.
21.
Singleton
BK
,
Frayne
J
,
Anstee
DJ
.
Blood group phenotypes resulting from mutations in erythroid transcription factors
.
Curr Opin Hematol
.
2012
;
19
(
6
):
486
-
493
.
22.
Doshi
BS
,
Abramowsky
C
,
Briones
M
,
Bunting
ST
.
Concomitant a novel ALAS2 mutation and GATA1 mutation in a newborn: a case report and review of the literature
.
Am J Blood Res
.
2014
;
4
(
1
):
41
-
45
.
23.
Crispino
JD
,
Horwitz
MS
.
GATA factor mutations in hematologic disease
.
Blood
.
2017
;
129
(
15
):
2103
-
2110
.
24.
Micci
F
,
Thorsen
J
,
Panagopoulos
I
, et al
.
High-throughput sequencing identifies an NFIA/CBFA2T3 fusion gene in acute erythroid leukemia with t(1;16)(p31;q24)
.
Leukemia
.
2013
;
27
(
4
):
980
-
982
.
25.
Greenberg
PL
,
Tuechler
H
,
Schanz
J
, et al
.
Revised international prognostic scoring system for myelodysplastic syndromes
.
Blood
.
2012
;
120
(
12
):
2454
-
2465
.
26.
Alexandrova
EM
,
Yallowitz
AR
,
Li
D
, et al
.
Improving survival by exploiting tumour dependence on stabilized mutant p53 for treatment [published correction appears in Nature. 2015;527(7578):398]
.
Nature
.
2015
;
523
(
7560
):
352
-
356
.
27.
Quivoron
C
,
Couronné
L
,
Della Valle
V
, et al
.
TET2 inactivation results in pleiotropic hematopoietic abnormalities in mouse and is a recurrent event during human lymphomagenesis
.
Cancer Cell
.
2011
;
20
(
1
):
25
-
38
.
28.
Li
Z
,
Godinho
FJ
,
Klusmann
J-H
,
Garriga-Canut
M
,
Yu
C
,
Orkin
SH
.
Developmental stage-selective effect of somatically mutated leukemogenic transcription factor GATA1
.
Nat Genet
.
2005
;
37
(
6
):
613
-
619
.
29.
Weiss
MJ
,
Yu
C
,
Orkin
SH
.
Erythroid-cell-specific properties of transcription factor GATA-1 revealed by phenotypic rescue of a gene-targeted cell line
.
Mol Cell Biol
.
1997
;
17
(
3
):
1642
-
1651
.
30.
Damm
F
,
Mylonas
E
,
Cosson
A
, et al
.
Acquired initiating mutations in early hematopoietic cells of CLL patients
.
Cancer Discov
.
2014
;
4
(
9
):
1088
-
1101
.
31.
Tamborero
D
,
Rubio-Perez
C
,
Deu-Pons
J
, et al
.
Cancer Genome Interpreter annotates the biological and clinical relevance of tumor alterations
.
Genome Med
.
2018
;
10
(
1
):
25
.
32.
Buenrostro
JD
,
Wu
B
,
Chang
HY
,
Greenleaf
WJ
.
ATAC-seq: a method for assaying chromatin accessibility genome-wide
.
Curr Protoc Mol Biol
.
2015
;
109
:
21.29.1
-
21.29.9
.
33.
Novershtern
N
,
Subramanian
A
,
Lawton
LN
, et al
.
Densely interconnected transcriptional circuits control cell states in human hematopoiesis
.
Cell
.
2011
;
144
(
2
):
296
-
309
.
34.
Ritchie
ME
,
Phipson
B
,
Wu
D
, et al
.
limma powers differential expression analyses for RNA-sequencing and microarray studies
.
Nucleic Acids Res
.
2015
;
43
(
7
):
e47
.
35.
Heuston
EF
,
Keller
CA
,
Lichtenberg
J
, et al;
NIH Intramural Sequencing Center
.
Establishment of regulatory elements during erythro-megakaryopoiesis identifies hematopoietic lineage-commitment points
.
Epigenetics Chromatin
.
2018
;
11
(
1
):
22
.
36.
Iacobucci
I
,
Wen
J
,
Meggendorfer
M
, et al
.
Genomic subtyping and therapeutic targeting of acute erythroleukemia
.
Nat Genet
.
2019
;
51
(
4
):
694
-
704
.
37.
Aran
D
,
Hu
Z
,
Butte
AJ
.
xCell: digitally portraying the tissue cellular heterogeneity landscape
.
Genome Biol
.
2017
;
18
(
1
):
220
.
38.
Merryweather-Clarke
AT
,
Atzberger
A
,
Soneji
S
, et al
.
Global gene expression analysis of human erythroid progenitors
.
Blood
.
2011
;
117
(
13
):
e96
-
e108
.
39.
Liu
L
,
Wang
H
,
Wen
J
, et al
.
Mutated genes and driver pathways involved in myelodysplastic syndromes—a transcriptome sequencing based approach
.
Mol Biosyst
.
2015
;
11
(
8
):
2158
-
2166
.
40.
Dolatshad
H
,
Pellagatti
A
,
Fernandez-Mercado
M
, et al
.
Disruption of SF3B1 results in deregulated expression and splicing of key genes and pathways in myelodysplastic syndrome hematopoietic stem and progenitor cells [published correction appears in Leukemia. 2015;29(8):1798]
.
Leukemia
.
2015
;
29
(
5
):
1092
-
1103
.
41.
Chen
L
,
Ge
B
,
Casale
FP
, et al
.
Genetic drivers of epigenetic and transcriptional variation in human immune cells
.
Cell
.
2016
;
167
(
5
):
1398
-
1414.e24
.
42.
Lachmann
A
,
Giorgi
FM
,
Lopez
G
,
Califano
A
.
ARACNe-AP: gene network reverse engineering through adaptive partitioning inference of mutual information
.
Bioinformatics
.
2016
;
32
(
14
):
2233
-
2235
.
43.
Alvarez
MJ
,
Shen
Y
,
Giorgi
FM
, et al
.
Functional characterization of somatic mutations in cancer using network-based inference of protein activity
.
Nat Genet
.
2016
;
48
(
8
):
838
-
847
.
44.
Madan
V
,
Kanojia
D
,
Li
J
, et al
.
Aberrant splicing of U12-type introns is the hallmark of ZRSR2 mutant myelodysplastic syndrome
.
Nat Commun
.
2015
;
6
:
6042
.
45.
Velten
L
,
Haas
SF
,
Raffel
S
, et al
.
Human haematopoietic stem cell lineage commitment is a continuous process
.
Nat Cell Biol
.
2017
;
19
(
4
):
271
-
281
.
46.
Chen
D
,
Zhang
G
.
Enforced expression of the GATA-3 transcription factor affects cell fate decisions in hematopoiesis
.
Exp Hematol
.
2001
;
29
(
8
):
971
-
980
.
47.
Larsen
J
,
Meyer
S
,
Steinlein
P
,
Beug
H
,
Hayman
MJ
.
Transformation of chicken bone marrow cells by the v-ski oncogene
.
Oncogene
.
1993
;
8
(
12
):
3221
-
3228
.
48.
Ueki
N
,
Zhang
L
,
Hayman
MJ
.
Ski negatively regulates erythroid differentiation through its interaction with GATA1
.
Mol Cell Biol
.
2004
;
24
(
23
):
10118
-
10125
.
49.
Singbrant
S
,
Wall
M
,
Moody
J
, et al
.
The SKI proto-oncogene enhances the in vivo repopulation of hematopoietic stem cells and causes myeloproliferative disease
.
Haematologica
.
2014
;
99
(
4
):
647
-
655
.
50.
Muench
DE
,
Ferchen
K
,
Velu
CS
, et al
.
SKI controls MDS-associated chronic TGF-β signaling, aberrant splicing, and stem cell fitness
.
Blood
.
2018
;
132
(
21
):
e24
-
e34
.
51.
Costa
V
,
Esposito
R
,
Ziviello
C
, et al
.
New somatic mutations and WNK1-B4GALNT3 gene fusion in papillary thyroid carcinoma
.
Oncotarget
.
2015
;
6
(
13
):
11242
-
11251
.
52.
Shearstone
JR
,
Pop
R
,
Bock
C
,
Boyle
P
,
Meissner
A
,
Socolovsky
M
.
Global DNA demethylation during mouse erythropoiesis in vivo
.
Science
.
2011
;
334
(
6057
):
799
-
802
.
53.
Hollanda
LM
,
Lima
CSP
,
Cunha
AF
, et al
.
An inherited mutation leading to production of only the short isoform of GATA-1 is associated with impaired erythropoiesis
.
Nat Genet
.
2006
;
38
(
7
):
807
-
812
.
54.
Ge
L
,
Zhang
RP
,
Wan
F
, et al
.
TET2 plays an essential role in erythropoiesis by regulating lineage-specific genes via DNA oxidative demethylation in a zebrafish model
.
Mol Cell Biol
.
2014
;
34
(
6
):
989
-
1002
.
55.
Zhang
X
,
Su
J
,
Jeong
M
, et al
.
DNMT3A and TET2 compete and cooperate to repress lineage-specific transcription factors in hematopoietic stem cells
.
Nat Genet
.
2016
;
48
(
9
):
1014
-
1023
.
56.
Yan
H
,
Wang
Y
,
Qu
X
, et al
.
Distinct roles for TET family proteins in regulating human erythropoiesis
.
Blood
.
2017
;
129
(
14
):
2002
-
2012
.
57.
Moran-Crusio
K
,
Reavie
L
,
Shih
A
, et al
.
Tet2 loss leads to increased hematopoietic stem cell self-renewal and myeloid transformation
.
Cancer Cell
.
2011
;
20
(
1
):
11
-
24
.
58.
Thoms
JAI
,
Birger
Y
,
Foster
S
, et al
.
ERG promotes T-acute lymphoblastic leukemia and is transcriptionally regulated in leukemic cells by a stem cell enhancer
.
Blood
.
2011
;
117
(
26
):
7079
-
7089
.
59.
Carmichael
CL
,
Metcalf
D
,
Henley
KJ
, et al
.
Hematopoietic overexpression of the transcription factor Erg induces lymphoid and erythro-megakaryocytic leukemia
.
Proc Natl Acad Sci USA
.
2012
;
109
(
38
):
15437
-
15442
.
60.
Kosmider
O
,
Denis
N
,
Lacout
C
,
Vainchenker
W
,
Dubreuil
P
,
Moreau-Gachelin
F
.
Kit-activating mutations cooperate with Spi-1/PU.1 overexpression to promote tumorigenic progression during erythroleukemia in mice
.
Cancer Cell
.
2005
;
8
(
6
):
467
-
478
.
61.
Takeda
J
,
Yoshida
K
,
Nannya
Y
, et al
.
Novel molecular pathogenesis and therapeutic target in acute erythroid leukemia [abstract]
.
Blood
.
2019
;
134
(
suppl 1
):
914
.
62.
Adélaïde
J
,
Cervera
N
,
Guille
A
, et al
.
Gains of EPOR and ERG genes in adult erythroleukaemia
.
Br J Haematol
.
In press
;
63.
Rimmelé
P
,
Kosmider
O
,
Mayeux
P
,
Moreau-Gachelin
F
,
Guillouf
C
.
Spi-1/PU.1 participates in erythroleukemogenesis by inhibiting apoptosis in cooperation with Epo signaling and by blocking erythroid differentiation
.
Blood
.
2007
;
109
(
7
):
3007
-
3014
.
64.
Jeong
JJ
,
Gu
X
,
Nie
J
, et al
.
Cytokine-regulated phosphorylation and activation of TET2 by JAK2 in hematopoiesis
.
Cancer Discov
.
2019
;
9
(
6
):
778
-
795
.
65.
Wichmann
C
,
Becker
Y
,
Chen-Wichmann
L
, et al
.
Dimer-tetramer transition controls RUNX1/ETO leukemogenic activity
.
Blood
.
2010
;
116
(
4
):
603
-
613
.
66.
Thirant
C
,
Ignacimouttou
C
,
Lopez
CK
, et al
.
ETO2-GLIS2 hijacks transcriptional complexes to drive cellular identity and self-renewal in pediatric acute megakaryoblastic leukemia
.
Cancer Cell
.
2017
;
31
(
3
):
452
-
465
.
67.
Han
GC
,
Vinayachandran
V
,
Bataille
AR
, et al
.
Genome-wide organization of GATA1 and TAL1 determined at high resolution
.
Mol Cell Biol
.
2015
;
36
(
1
):
157
-
172
.
68.
Wadman
IA
,
Osada
H
,
Grütz
GG
, et al
.
The LIM-only protein Lmo2 is a bridging molecule assembling an erythroid, DNA-binding complex which includes the TAL1, E47, GATA-1 and Ldb1/NLI proteins
.
EMBO J
.
1997
;
16
(
11
):
3145
-
3157
.
69.
Tsang
AP
,
Visvader
JE
,
Turner
CA
, et al
.
FOG, a multitype zinc finger protein, acts as a cofactor for transcription factor GATA-1 in erythroid and megakaryocytic differentiation
.
Cell
.
1997
;
90
(
1
):
109
-
119
.
70.
Schuh
AH
,
Tipping
AJ
,
Clark
AJ
, et al
.
ETO-2 associates with SCL in erythroid cells and megakaryocytes and provides repressor functions in erythropoiesis
.
Mol Cell Biol
.
2005
;
25
(
23
):
10235
-
10250
.
You do not currently have access to this content.

Sign in via your Institution

Sign In