Key Points

  • LUBAC accelerates B-cell lymphomagenesis through protection of DNA damage–induced apoptosis, thereby promoting AID-mediated mutations.

  • Inhibition of LUBAC by small molecules is a promising therapeutic strategy for B-cell lymphomas with NF-κB activation.

Abstract

The linear ubiquitin chain assembly complex (LUBAC) is a key regulator of NF-κB signaling. Activating single-nucleotide polymorphisms of HOIP, the catalytic subunit of LUBAC, are enriched in patients with activated B-cell–like (ABC) diffuse large B-cell lymphoma (DLBCL), and expression of HOIP, which parallels LUBAC activity, is elevated in ABC-DLBCL samples. Thus, to clarify the precise roles of LUBAC in lymphomagenesis, we generated a mouse model with augmented expression of HOIP in B cells. Interestingly, augmented HOIP expression facilitated DLBCL-like B-cell lymphomagenesis driven by MYD88-activating mutation. The developed lymphoma cells partly shared somatic gene mutations with human DLBCLs, with increased frequency of a typical AID mutation pattern. In vitro analysis revealed that HOIP overexpression protected B cells from DNA damage-induced cell death through NF-κB activation, and analysis of the human DLBCL database showed that expression of HOIP positively correlated with gene signatures representing regulation of apoptosis signaling, as well as NF-κB signaling. These results indicate that HOIP facilitates lymphomagenesis by preventing cell death and augmenting NF-κB signaling, leading to accumulation of AID-mediated mutations. Furthermore, a natural compound that specifically inhibits LUBAC was shown to suppress the tumor growth in a mouse transplantation model. Collectively, our data indicate that LUBAC is crucially involved in B-cell lymphomagenesis through protection against DNA damage–induced cell death and is a suitable therapeutic target for B-cell lymphomas.

REFERENCES

REFERENCES
1.
Swerdlow
SH
,
Campo
E
,
Harris
NL
, et al
. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues (Revised 4th Edition). Lyon: International Agency for Research on Cancer (IARC);
2017
.
2.
Lenz
G
,
Staudt
LM
.
Aggressive lymphomas
.
N Engl J Med
.
2010
;
362
(
15
):
1417
-
1429
.
3.
Alizadeh
AA
,
Eisen
MB
,
Davis
RE
, et al
.
Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling
.
Nature
.
2000
;
403
(
6769
):
503
-
511
.
4.
Monti
S
,
Savage
KJ
,
Kutok
JL
, et al
.
Molecular profiling of diffuse large B-cell lymphoma identifies robust subtypes including one characterized by host inflammatory response
.
Blood
.
2005
;
105
(
5
):
1851
-
1861
.
5.
Shaffer
AL
III
,
Young
RM
,
Staudt
LM
.
Pathogenesis of human B cell lymphomas
.
Annu Rev Immunol
.
2012
;
30
(
1
):
565
-
610
.
6.
Wright
G
,
Tan
B
,
Rosenwald
A
,
Hurt
EH
,
Wiestner
A
,
Staudt
LM
.
A gene expression-based method to diagnose clinically distinct subgroups of diffuse large B cell lymphoma
.
Proc Natl Acad Sci USA
.
2003
;
100
(
17
):
9991
-
9996
.
7.
Kelly
PN
,
Romero
DL
,
Yang
Y
, et al
.
Selective interleukin-1 receptor-associated kinase 4 inhibitors for the treatment of autoimmune disorders and lymphoid malignancy
.
J Exp Med
.
2015
;
212
(
13
):
2189
-
2201
.
8.
Nowakowski
GS
,
LaPlant
B
,
Macon
WR
, et al
.
Lenalidomide combined with R-CHOP overcomes negative prognostic impact of non-germinal center B-cell phenotype in newly diagnosed diffuse large B-cell lymphoma: a phase II study
.
J Clin Oncol
.
2015
;
33
(
3
):
251
-
257
.
9.
Tilly
H
,
Gomes da Silva
M
,
Vitolo
U
, et al;
ESMO Guidelines Committee
.
Diffuse large B-cell lymphoma (DLBCL): ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up
.
Ann Oncol
.
2015
;
26
(
suppl 5
):
v116
-
v125
.
10.
Ngo
VN
,
Young
RM
,
Schmitz
R
, et al
.
Oncogenically active MYD88 mutations in human lymphoma
.
Nature
.
2011
;
470
(
7332
):
115
-
119
.
11.
Chen
ZJ
.
Ubiquitination in signaling to and activation of IKK
.
Immunol Rev
.
2012
;
246
(
1
):
95
-
106
.
12.
Fujita
H
,
Rahighi
S
,
Akita
M
, et al
.
Mechanism underlying IκB kinase activation mediated by the linear ubiquitin chain assembly complex
.
Mol Cell Biol
.
2014
;
34
(
7
):
1322
-
1335
.
13.
Ikeda
F
,
Deribe
YL
,
Skånland
SS
, et al
.
SHARPIN forms a linear ubiquitin ligase complex regulating NF-κB activity and apoptosis
.
Nature
.
2011
;
471
(
7340
):
637
-
641
.
14.
Kensche
T
,
Tokunaga
F
,
Ikeda
F
,
Goto
E
,
Iwai
K
,
Dikic
I
.
Analysis of nuclear factor-κB (NF-κB) essential modulator (NEMO) binding to linear and lysine-linked ubiquitin chains and its role in the activation of NF-κB
.
J Biol Chem
.
2012
;
287
(
28
):
23626
-
23634
.
15.
Kirisako
T
,
Kamei
K
,
Murata
S
, et al
.
A ubiquitin ligase complex assembles linear polyubiquitin chains
.
EMBO J
.
2006
;
25
(
20
):
4877
-
4887
.
16.
Kumari
S
,
Redouane
Y
,
Lopez-Mosqueda
J
, et al
.
Sharpin prevents skin inflammation by inhibiting TNFR1-induced keratinocyte apoptosis
.
eLife
.
2014
;
3
:
e03422
.
17.
Tokunaga
F
,
Nakagawa
T
,
Nakahara
M
, et al
.
SHARPIN is a component of the NF-κB-activating linear ubiquitin chain assembly complex
.
Nature
.
2011
;
471
(
7340
):
633
-
636
.
18.
Tokunaga
F
,
Sakata
S
,
Saeki
Y
, et al
.
Involvement of linear polyubiquitylation of NEMO in NF-kappaB activation
.
Nat Cell Biol
.
2009
;
11
(
2
):
123
-
132
.
19.
Gerlach
B
,
Cordier
SM
,
Schmukle
AC
, et al
.
Linear ubiquitination prevents inflammation and regulates immune signalling
.
Nature
.
2011
;
471
(
7340
):
591
-
596
.
20.
Yang
Y
,
Schmitz
R
,
Mitala
J
, et al
.
Essential role of the linear ubiquitin chain assembly complex in lymphoma revealed by rare germline polymorphisms
.
Cancer Discov
.
2014
;
4
(
4
):
480
-
493
.
21.
Sasaki
Y
,
Sano
S
,
Nakahara
M
, et al
.
Defective immune responses in mice lacking LUBAC-mediated linear ubiquitination in B cells
.
EMBO J
.
2013
;
32
(
18
):
2463
-
2476
.
22.
Satpathy
S
,
Wagner
SA
,
Beli
P
, et al
.
Systems-wide analysis of BCR signalosomes and downstream phosphorylation and ubiquitylation
.
Mol Syst Biol
.
2015
;
11
(
6
):
810
.
23.
Yang
Y
,
Kelly
P
,
Shaffer
AL
III
, et al
.
Targeting non-proteolytic protein ubiquitination for the treatment of diffuse large B Cell lymphoma
.
Cancer Cell
.
2016
;
29
(
4
):
494
-
507
.
24.
Yang
YK
,
Yang
C
,
Chan
W
,
Wang
Z
,
Deibel
KE
,
Pomerantz
JL
.
Molecular determinants of scaffold-induced linear ubiquitinylation of B cell lymphoma/leukemia 10 (Bcl10) during T cell receptor and oncogenic caspase recruitment domain-containing protein 11 (CARD11) signaling
.
J Biol Chem
.
2016
;
291
(
50
):
25921
-
25936
.
25.
Reddy
A
,
Zhang
J
,
Davis
NS
, et al
.
Genetic and functional drivers of diffuse large B cell lymphoma
.
Cell
.
2017
;
171
(2):
481
-
494.e415
.
26.
Rickert
RC
,
Roes
J
,
Rajewsky
K
.
B lymphocyte-specific, Cre-mediated mutagenesis in mice
.
Nucleic Acids Res
.
1997
;
25
(
6
):
1317
-
1318
.
27.
Grossman
RL
,
Heath
AP
,
Ferretti
V
, et al
.
Toward a shared vision for cancer genomic data
.
N Engl J Med
.
2016
;
375
(
12
):
1109
-
1112
.
28.
Lohr
JG
,
Stojanov
P
,
Lawrence
MS
, et al
.
Discovery and prioritization of somatic mutations in diffuse large B-cell lymphoma (DLBCL) by whole-exome sequencing
.
Proc Natl Acad Sci USA
.
2012
;
109
(
10
):
3879
-
3884
.
29.
Kataoka
K
,
Nagata
Y
,
Kitanaka
A
, et al
.
Integrated molecular analysis of adult T cell leukemia/lymphoma
.
Nat Genet
.
2015
;
47
(
11
):
1304
-
1315
.
30.
Schmitz
R
,
Wright
GW
,
Huang
DW
, et al
.
Genetics and pathogenesis of diffuse large B-cell lymphoma
.
N Engl J Med
.
2018
;
378
(
15
):
1396
-
1407
.
31.
Álvarez-Prado
AF
,
Pérez-Durán
P
,
Pérez-García
A
, et al
.
A broad atlas of somatic hypermutation allows prediction of activation-induced deaminase targets
.
J Exp Med
.
2018
;
215
(
3
):
761
-
771
.
32.
Petri
A
,
Dybkær
K
,
Bøgsted
M
, et al
.
Long noncoding RNA expression during human B-cell development
.
PLoS One
.
2015
;
10
(
9
):
e0138236
.
33.
Dubois
SM
,
Alexia
C
,
Wu
Y
, et al
.
A catalytic-independent role for the LUBAC in NF-κB activation upon antigen receptor engagement and in lymphoma cells
.
Blood
.
2014
;
123
(
14
):
2199
-
2203
.
34.
Pasqualucci
L
,
Dalla-Favera
R
.
Genetics of diffuse large B-cell lymphoma
.
Blood
.
2018
;
131
(
21
):
2307
-
2319
.
35.
Keusekotten
K
,
Elliott
PR
,
Glockner
L
, et al
.
OTULIN antagonizes LUBAC signaling by specifically hydrolyzing Met1-linked polyubiquitin
.
Cell
.
2013
;
153
(
6
):
1312
-
1326
.
36.
Rivkin
E
,
Almeida
SM
,
Ceccarelli
DF
, et al
.
The linear ubiquitin-specific deubiquitinase gumby regulates angiogenesis
.
Nature
.
2013
;
498
(
7454
):
318
-
324
.
37.
Hjerpe
R
,
Aillet
F
,
Lopitz-Otsoa
F
,
Lang
V
,
England
P
,
Rodriguez
MS
.
Efficient protection and isolation of ubiquitylated proteins using tandem ubiquitin-binding entities
.
EMBO Rep
.
2009
;
10
(
11
):
1250
-
1258
.
38.
van Wijk
SJ
,
Fiškin
E
,
Dikic
I
.
Selective monitoring of ubiquitin signals with genetically encoded ubiquitin chain-specific sensors
.
Nat Protoc
.
2013
;
8
(
7
):
1449
-
1458
.
39.
Knittel
G
,
Liedgens
P
,
Korovkina
D
, et al;
German International Cancer Genome Consortium Molecular Mechanisms in Malignant Lymphoma by Sequencing Project Consortium
.
B-cell-specific conditional expression of Myd88p.L252P leads to the development of diffuse large B-cell lymphoma in mice
.
Blood
.
2016
;
127
(
22
):
2732
-
2741
.
40.
Hans
CP
,
Weisenburger
DD
,
Greiner
TC
, et al
.
Confirmation of the molecular classification of diffuse large B-cell lymphoma by immunohistochemistry using a tissue microarray
.
Blood
.
2004
;
103
(
1
):
275
-
282
.
41.
Chapuy
B
,
Stewart
C
,
Dunford
AJ
, et al
.
Molecular subtypes of diffuse large B cell lymphoma are associated with distinct pathogenic mechanisms and outcomes [published correction appears in Nat Med. 2018;24(8):1290-1291]
.
Nat Med
.
2018
;
24
(
5
):
679
-
690
.
42.
Liu
M
,
Duke
JL
,
Richter
DJ
, et al
.
Two levels of protection for the B cell genome during somatic hypermutation
.
Nature
.
2008
;
451
(
7180
):
841
-
845
.
43.
Muramatsu
M
,
Kinoshita
K
,
Fagarasan
S
,
Yamada
S
,
Shinkai
Y
,
Honjo
T
.
Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme
.
Cell
.
2000
;
102
(
5
):
553
-
563
.
44.
Lossos
IS
,
Levy
R
,
Alizadeh
AA
.
AID is expressed in germinal center B-cell-like and activated B-cell-like diffuse large-cell lymphomas and is not correlated with intraclonal heterogeneity
.
Leukemia
.
2004
;
18
(
11
):
1775
-
1779
.
45.
Mlynarczyk
C
,
Fontán
L
,
Melnick
A
.
Germinal center-derived lymphomas: The darkest side of humoral immunity
.
Immunol Rev
.
2019
;
288
(
1
):
214
-
239
.
46.
Pasqualucci
L
,
Neumeister
P
,
Goossens
T
, et al
.
Hypermutation of multiple proto-oncogenes in B-cell diffuse large-cell lymphomas
.
Nature
.
2001
;
412
(
6844
):
341
-
346
.
47.
Khodabakhshi
AH
,
Morin
RD
,
Fejes
AP
, et al
.
Recurrent targets of aberrant somatic hypermutation in lymphoma
.
Oncotarget
.
2012
;
3
(
11
):
1308
-
1319
.
48.
Rada
C
,
Milstein
C
.
The intrinsic hypermutability of antibody heavy and light chain genes decays exponentially
.
EMBO J
.
2001
;
20
(
16
):
4570
-
4576
.
49.
Storb
U
,
Peters
A
,
Klotz
E
, et al
.
Cis-acting sequences that affect somatic hypermutation of Ig genes
.
Immunol Rev
.
1998
;
162
(
1
):
153
-
160
.
50.
Bahjat
M
,
Guikema
JEJ
.
The complex interplay between DNA injury and repair in enzymatically induced mutagenesis and DNA damage in B lymphocytes
.
Int J Mol Sci
.
2017
;
18
(
9
):
E1876
.
51.
MacKay
C
,
Carroll
E
,
Ibrahim
AFM
, et al
.
E3 ubiquitin ligase HOIP attenuates apoptotic cell death induced by cisplatin
.
Cancer Res
.
2014
;
74
(
8
):
2246
-
2257
.
52.
Niu
J
,
Shi
Y
,
Iwai
K
,
Wu
ZH
.
LUBAC regulates NF-κB activation upon genotoxic stress by promoting linear ubiquitination of NEMO
.
EMBO J
.
2011
;
30
(
18
):
3741
-
3753
.
53.
McCool
KW
,
Miyamoto
S
.
DNA damage-dependent NF-κB activation: NEMO turns nuclear signaling inside out
.
Immunol Rev
.
2012
;
246
(
1
):
311
-
326
.
54.
Wang
CY
,
Mayo
MW
,
Baldwin
AS
Jr.
.
TNF- and cancer therapy-induced apoptosis: potentiation by inhibition of NF-kappaB
.
Science
.
1996
;
274
(
5288
):
784
-
787
.
55.
Wu
ZH
,
Miyamoto
S
.
Induction of a pro-apoptotic ATM-NF-kappaB pathway and its repression by ATR in response to replication stress
.
EMBO J
.
2008
;
27
(
14
):
1963
-
1973
.
56.
Di Noia
JM
,
Neuberger
MS
.
Molecular mechanisms of antibody somatic hypermutation
.
Annu Rev Biochem
.
2007
;
76
(
1
):
1
-
22
.
57.
Fujita
H
,
Tokunaga
A
,
Shimizu
S
, et al
.
Cooperative domain formation by homologous motifs in HOIL-1L and SHARPIN plays a crucial role in LUBAC stabilization
.
Cell Rep
.
2018
;
23
(
4
):
1192
-
1204
.
58.
Smit
JJ
,
Monteferrario
D
,
Noordermeer
SM
,
van Dijk
WJ
,
van der Reijden
BA
,
Sixma
TK
.
The E3 ligase HOIP specifies linear ubiquitin chain assembly through its RING-IBR-RING domain and the unique LDD extension
.
EMBO J
.
2012
;
31
(
19
):
3833
-
3844
.
59.
Wang
JQ
,
Jeelall
YS
,
Beutler
B
,
Horikawa
K
,
Goodnow
CC
.
Consequences of the recurrent MYD88(L265P) somatic mutation for B cell tolerance
.
J Exp Med
.
2014
;
211
(
3
):
413
-
426
.
60.
Lenz
G
,
Wright
GW
,
Emre
NC
, et al
.
Molecular subtypes of diffuse large B-cell lymphoma arise by distinct genetic pathways
.
Proc Natl Acad Sci USA
.
2008
;
105
(
36
):
13520
-
13525
.
61.
Monni
O
,
Joensuu
H
,
Franssila
K
,
Klefstrom
J
,
Alitalo
K
,
Knuutila
S
.
BCL2 overexpression associated with chromosomal amplification in diffuse large B-cell lymphoma
.
Blood
.
1997
;
90
(
3
):
1168
-
1174
.
62.
Treon
SP
,
Xu
L
,
Yang
G
, et al
.
MYD88 L265P somatic mutation in Waldenström’s macroglobulinemia
.
N Engl J Med
.
2012
;
367
(
9
):
826
-
833
.
63.
Kapoor
P
,
Paludo
J
,
Vallumsetla
N
,
Greipp
PR
.
Waldenström macroglobulinemia: What a hematologist needs to know
.
Blood Rev
.
2015
;
29
(
5
):
301
-
319
.
You do not currently have access to this content.

Comments

0 Comments