Key Points

  • A VTE case/control exome sequencing study identified rare variants in the genes encoding protein S, protein C, antithrombin, and stabilin-2.

  • Rare damaging variants in STAB2 are associated with increased plasma von Willebrand factor through decreased clearance.

Abstract

Deep vein thrombosis and pulmonary embolism, collectively defined as venous thromboembolism (VTE), are the third leading cause of cardiovascular death in the United States. Common genetic variants conferring increased varying degrees of VTE risk have been identified by genome-wide association studies (GWAS). Rare mutations in the anticoagulant genes PROC, PROS1 and SERPINC1 result in perinatal lethal thrombosis in homozygotes and markedly increased VTE risk in heterozygotes. However, currently described VTE variants account for an insufficient portion of risk to be routinely used for clinical decision making. To identify new rare VTE risk variants, we performed a whole-exome study of 393 individuals with unprovoked VTE and 6114 controls. This study identified 4 genes harboring an excess number of rare damaging variants in patients with VTE: PROS1, STAB2, PROC, and SERPINC1. At STAB2, 7.8% of VTE cases and 2.4% of controls had a qualifying rare variant. In cell culture, VTE-associated variants of STAB2 had a reduced surface expression compared with reference STAB2. Common variants in STAB2 have been previously associated with plasma von Willebrand factor and coagulation factor VIII levels in GWAS, suggesting that haploinsufficiency of stabilin-2 may increase VTE risk through elevated levels of these procoagulants. In an independent cohort, we found higher von Willebrand factor levels and equivalent propeptide levels in individuals with rare STAB2 variants compared with controls. Taken together, this study demonstrates the utility of gene-based collapsing analyses to identify loci harboring an excess of rare variants with functional connections to a complex thrombotic disease.

REFERENCES

REFERENCES
1.
Rosendaal
F
.
Causes of venous thrombosis
.
Thromb J
.
2016
;
14
(
suppl 1
):
118
-
121
.
2.
Couturaud
F
,
Leroyer
C
,
Tromeur
C
, et al
.
Factors that predict thrombosis in relatives of patients with venous thromboembolism
.
Blood
.
2014
;
124
(
13
):
2124
-
2130
.
3.
Zoller
B
,
Ohlsson
H
,
Sundquist
J
,
Sundquist
K
.
A sibling based design to quantify genetic and shared environmental effects of venous thromboembolism in Sweden
.
Thromb Res
.
2017
;
149
:
82
-
87
.
4.
Antoni
G
,
Morange
P
,
Luo
Y
, et al
.
A multi-stage multi-design strategy provides strong evidence that the BAI3 locus is associated with early-onset venous thromboembolism
.
J Thromb Haemost
.
2010
;
8
(
12
):
2671
-
2679
.
5.
Germain
M
,
Chasman
D
,
de Haan
H
, et al;
Cardiogenics Consortium
.
Meta-analysis of 65,734 individuals identifies TSPAN15 and SLC44A2 as two susceptibility loci for venous thromboembolism
.
Am J Hum Genet
.
2015
;
96
(
4
):
532
-
542
.
6.
Heit
J
,
Armasu
S
,
Asmann
Y
, et al
.
A genome-wide association study of venous thromboembolism identifies risk variants in chromosomes 1q24.2 and 9q
.
J Thromb Haemost
.
2012
;
10
(
8
):
1521
-
1531
.
7.
Tang
W
,
Teichert
M
,
Chasman
D
, et al
.
A genome-wide association study for venous thromboembolism: the extended cohorts for heart and aging research in genomic epidemiology (CHARGE) consortium
.
Genet Epidemiol
.
2013
;
37
(
5
):
512
-
521
.
8.
Trégouët
D
,
Heath
S
,
Saut
N
, et al
.
Common susceptibility alleles are unlikely to contribute as strongly as the FV and ABO loci to VTE risk: results from a GWAS approach
.
Blood
.
2009
;
113
(
21
):
5298
-
5303
.
9.
Hinds
D
,
Buil
A
,
Ziemek
D
, et al;
METASTROKE Consortium, INVENT Consortium
.
Genome-wide association analysis of self-reported events in 6135 individuals and 252 827 controls identifies 8 loci associated with thrombosis
.
Hum Mol Genet
.
2016
;
25
(
9
):
1867
-
1874
.
10.
Klarin
D
,
Emdin
C
,
Natarajan
P
,
Conrad
M
,
Kathiresan
S
;
INVENT Consortium
.
Genetic analysis of venous thromboembolism in UK Biobank identifies the ZFPM2 locus and implicates obesity as a causal risk factor
.
Circ Cardiovasc Genet
.
2017
;
10
(
2
):
e001643
.
11.
Klarin
D
,
Busenkell
E
,
Judy
R
, et al;
Veterans Affairs’ Million Veteran Program
.
Genome-wide association analysis of venous thromboembolism identifies new risk loci and genetic overlap with arterial vascular disease
.
Nat Genet
.
2019
;
51
(
11
):
1574
-
1579
.
12.
Lindström
S
,
Wang
L
,
Smith
E
, et al;
CHARGE Hemostasis Working Group
.
Genomic and transcriptomic association studies identify 16 novel susceptibility loci for venous thromboembolism
.
Blood
.
2019
;
134
(
19
):
1645
-
1657
.
13.
Germain
M
,
Saut
N
,
Greliche
N
, et al
.
Genetics of venous thrombosis: insights from a new genome wide association study
.
PLoS One
.
2011
;
6
(
9
):
e25581
.
14.
Desch
K
.
Dissecting the genetic determinants of hemostasis and thrombosis
.
Curr Opin Hematol
.
2015
;
22
(
5
):
428
-
436
.
15.
Wainschtein
P
,
Jain
D
,
Group
T
, et al;
TOPMed Anthropometry Working Group
;
Trans-Omics for Precision Medicine Consortium
.
Recovery of trait heritability from whole genome sequencing data
.
bioRxiv
.
2019
; doi:https://doi.org/10.1101/588020.
16.
Bovill
E
,
Bauer
K
,
Dickerman
J
,
Callas
P
,
West
B
.
The clinical spectrum of heterozygous protein C deficiency in a large New England kindred
.
Blood
.
1989
;
73
(
3
):
712
-
717
.
17.
Romeo
G
,
Hassan
H
,
Staempfli
S
, et al
.
Hereditary thrombophilia: identification of nonsense and missense mutations in the protein C gene
.
Proc Natl Acad Sci USA
.
1987
;
84
(
9
):
2829
-
2832
.
18.
Comp
P
,
Nixon
R
,
Cooper
M
,
Esmon
C
.
Familial protein S deficiency is associated with recurrent thrombosis
.
J Clin Invest
.
1984
;
74
(
6
):
2082
-
2088
.
19.
Ploos van Amstel
H
,
Huisman
M
,
Reitsma
P
,
Wouter ten Cate
J
,
Bertina
R
.
Partial protein S gene deletion in a family with hereditary thrombophilia
.
Blood
.
1989
;
73
(
2
):
479
-
483
.
20.
Bock
S
,
Prochownik
E
.
Molecular genetic survey of 16 kindreds with hereditary antithrombin III deficiency
.
Blood
.
1987
;
70
(
5
):
1273
-
1278
.
21.
Prochownik
E
,
Antonarakis
S
,
Bauer
K
,
Rosenberg
R
,
Fearon
E
,
Orkin
S
.
Molecular heterogeneity of inherited antithrombin III deficiency
.
N Engl J Med
.
1983
;
308
(
26
):
1549
-
1552
.
22.
Halvorsen
M
,
Lin
Y
,
Sampson
B
, et al
.
Whole exome sequencing reveals severe thrombophilia in acute unprovoked idiopathic fatal pulmonary embolism
.
EBioMedicine
.
2017
;
17
:
95
-
100
.
23.
Lee
E
,
Dykas
D
,
Leavitt
A
, et al
.
Whole-exome sequencing in evaluation of patients with venous thromboembolism
.
Blood Adv
.
2017
;
1
(
16
):
1224
-
1237
.
24.
Downes
K
,
Megy
K
,
Duarte
D
, et al;
NIHR BioResource
.
Diagnostic high-throughput sequencing of 2396 patients with bleeding, thrombotic, and platelet disorders
.
Blood
.
2019
;
134
(
23
):
2082
-
2091
.
25.
Kearon
C
,
Ginsberg
J
,
Kovacs
M
, et al;
Extended Low-Intensity Anticoagulation for Thrombo-Embolism Investigators
.
Comparison of low-intensity warfarin therapy with conventional-intensity warfarin therapy for long-term prevention of recurrent venous thromboembolism
.
N Engl J Med
.
2003
;
349
(
7
):
631
-
639
.
26.
Kearon
C
,
Julian
J
,
Kovacs
M
, et al;
ELATE Investigators
.
Influence of thrombophilia on risk of recurrent venous thromboembolism while on warfarin: results from a randomized trial
.
Blood
.
2008
;
112
(
12
):
4432
-
4436
.
27.
Kearon
C
,
Spencer
F
,
O’Keeffe
D
, et al;
D-dimer Optimal Duration Study Investigators
.
D-dimer testing to select patients with a first unprovoked venous thromboembolism who can stop anticoagulant therapy: a cohort study
.
Ann Intern Med
.
2015
;
162
(
1
):
27
-
34
.
28.
Kearon
C
,
Parpia
S
,
Spencer
F
, et al
.
D-dimer levels and recurrence in patients with unprovoked VTE and a negative qualitative D-dimer test after treatment
.
Thromb Res
.
2016
;
146
:
119
-
125
.
29.
de Visser
M
,
van Minkelen
R
,
van Marion
V
, et al
.
Genome-wide linkage scan in affected sibling pairs identifies novel susceptibility region for venous thromboembolism: Genetics In Familial Thrombosis study
.
J Thromb Haemost
.
2013
;
11
(
8
):
1474
-
1484
.
30.
Cunha
M
,
Meijers
J
,
Rosendaal
F
,
Vlieg
A
,
Reitsma
P
,
Middeldorp
S
.
Whole exome sequencing in thrombophilic pedigrees to identify genetic risk factors for venous thromboembolism
.
PLoS One
.
2017
;
12
(
11
):
e0187699
.
31.
Ozel
A
,
McGee
B
,
Siemieniak
D
, et al
.
Genome-wide studies of von Willebrand factor propeptide identify loci contributing to variation in propeptide levels and von Willebrand factor clearance
.
J Thromb Haemost
.
2016
;
14
(
9
):
1888
-
1898
.
32.
Zhou
B
,
Weigel
J
,
Fauss
L
,
Weigel
P
.
Identification of the hyaluronan receptor for endocytosis (HARE)
.
J Biol Chem
.
2000
;
275
(
48
):
37733
-
37741
.
33.
Zhou
B
,
McGary
C
,
Weigel
J
,
Saxena
A
,
Weigel
P
.
Purification and molecular identification of the human hyaluronan receptor for endocytosis
.
Glycobiology
.
2003
;
13
(
5
):
339
-
349
.
34.
Harris
E
,
Kyosseva
S
,
Weigel
J
,
Weigel
P
.
Expression, processing, and glycosaminoglycan binding activity of the recombinant human 315-kDa hyaluronic acid receptor for endocytosis (HARE)
.
J Biol Chem
.
2007
;
282
(
5
):
2785
-
2797
.
35.
Smith
N
,
Chen
M
,
Dehghan
A
, et al;
Wellcome Trust Case Control Consortium
.
Novel associations of multiple genetic loci with plasma levels of factor VII, factor VIII, and von Willebrand factor: The CHARGE (Cohorts for Heart and Aging Research in Genome Epidemiology) Consortium
.
Circulation
.
2010
;
121
(
12
):
1382
-
1392
.
36.
Huffman
J
,
de Vries
P
,
Morrison
A
, et al
.
Rare and low-frequency variants and their association with plasma levels of fibrinogen, FVII, FVIII, and vWF
.
Blood
.
2015
;
126
(
11
):
e19
-
e29
.
37.
Calabrò
P
,
Gragnano
F
,
Golia
E
,
Grove
E
.
von Willebrand factor and venous thromboembolism: pathogenic link and therapeutic implications
.
Semin Thromb Hemost
.
2018
;
44
(
3
):
249
-
260
.
38.
Swystun
L
,
Lai
J
,
Notley
C
, et al
.
The endothelial cell receptor stabilin-2 regulates VWF-FVIII complex half-life and immunogenicity
.
J Clin Invest
.
2018
;
128
(
9
):
4057
-
4073
.
39.
O’Sullivan
J
,
Ward
S
,
Lavin
M
,
O’Donnell
J
.
von Willebrand factor clearance–biological mechanisms and clinical significance
.
Br J Haematol
.
2018
;
183
(
2
):
185
-
195
.
40.
Beard
R
Jr.
,
Yang
X
,
Meegan
J
, et al
.
Palmitoyl acyltransferase DHHC21 mediates endothelial dysfunction in systemic inflammatory response syndrome
.
Nat Commun
.
2016
;
7
(
1
):
1
-
19
.
41.
Spector
T
,
Williams
F
.
The UK Adult Twin Registry (TwinsUK)
.
Twin Res Hum Genet
.
2006
;
9
(
6
):
899
-
906
.
42.
Haberichter
S
.
von Willebrand factor propeptide: biology and clinical utility
.
Blood
.
2015
;
126
(
15
):
1753
-
1761
.
43.
Moayyeri
A
,
Hammond
C
,
Hart
D
,
Spector
T
.
The UK Adult Twin Registry (TwinsUK Resource)
.
Twin Res Hum Genet
.
2013
;
16
(
1
):
144
-
149
.
44.
Barbalic
M
,
Dupuis
J
,
Dehghan
A
, et al
.
Large-scale genomic studies reveal central role of ABO in sP-selectin and sICAM-1 levels
.
Hum Mol Genet
.
2010
;
19
(
9
):
1863
-
1872
.
45.
Cirulli
E
,
Lasseigne
B
,
Petrovski
S
, et al;
FALS Sequencing Consortium
.
Exome sequencing in amyotrophic lateral sclerosis identifies risk genes and pathways
.
Science
.
2015
;
347
(
6229
):
1436
-
1441
.
46.
Sun
B
,
Maranville
J
,
Peters
J
, et al
.
Genomic atlas of the human plasma proteome
.
Nature
.
2018
;
558
(
7708
):
73
-
79
.
47.
Lek
M
,
Karczewski
K
,
Minikel
E
, et al;
Exome Aggregation Consortium
.
Analysis of protein-coding genetic variation in 60,706 humans
.
Nature
.
2016
;
536
(
7616
):
285
-
291
.
48.
Desch
K
,
Ozel
A
,
Siemieniak
D
, et al
.
Linkage analysis identifies a locus for plasma von Willebrand factor undetected by genome-wide association
.
Proc Natl Acad Sci USA
.
2013
;
110
(
2
):
588
-
593
.
You do not currently have access to this content.