Abstract

Allogeneic hematopoietic stem cell transplantation (allo-SCT) offers cure for a variety of conditions, in particular, but not limited to, hematologic malignancies. However, it can be associated with life-threatening complications, including graft-versus-host disease (GVHD) and infections, which are factors limiting its widespread use. Technical advances in the field of microbiome research have allowed for a better understanding of the microbial flora of the human intestine, as well as dissection of their interactions with the host immune system in allo-SCT and posttransplant complications. There is growing evidence that the commensal microbiome is frequently dysregulated following allo-SCT and that this dysbiosis can predispose to adverse clinical outcomes, especially including acute intestinal GVHD and reduced overall survival. In this review, we discuss the interactions between the microbiome and the components of the immune system that play a major role in the pathways leading to the inflammatory state of acute intestinal GVHD. We also discuss the microbiome-centered strategies that have been devised or are actively being investigated to improve the outcomes of allo-SCT patients in regard to acute intestinal GVHD.

REFERENCES

1.
Maeda
Y
.
Pathogenesis of graft-versus-host disease: innate immunity amplifying acute alloimmune responses
.
Int J Hematol
.
2013
;
98
(
3
):
293
-
299
.
2.
Turnbaugh
PJ
,
Ley
RE
,
Hamady
M
,
Fraser-Liggett
CM
,
Knight
R
,
Gordon
JI
.
The human microbiome project
.
Nature
.
2007
;
449
(
7164
):
804
-
810
.
3.
Lozupone
CA
,
Stombaugh
JI
,
Gordon
JI
,
Jansson
JK
,
Knight
R
.
Diversity, stability and resilience of the human gut microbiota
.
Nature
.
2012
;
489
(
7415
):
220
-
230
.
4.
Staffas
A
,
Burgos da Silva
M
,
van den Brink
MRM
.
The intestinal microbiota in allogeneic hematopoietic cell transplant and graft-versus-host disease [published correction appears in Blood. 2017;129(15):2204]
.
Blood
.
2017
;
129
(
8
):
927
-
933
.
5.
Eckburg
PB
,
Bik
EM
,
Bernstein
CN
, et al
.
Diversity of the human intestinal microbial flora
.
Science
.
2005
;
308
(
5728
):
1635
-
1638
.
6.
Olszak
T
,
An
D
,
Zeissig
S
, et al
.
Microbial exposure during early life has persistent effects on natural killer T cell function
.
Science
.
2012
;
336
(
6080
):
489
-
493
.
7.
Kau
AL
,
Ahern
PP
,
Griffin
NW
,
Goodman
AL
,
Gordon
JI
.
Human nutrition, the gut microbiome and the immune system
.
Nature
.
2011
;
474
(
7351
):
327
-
336
.
8.
Turnbaugh
PJ
,
Bäckhed
F
,
Fulton
L
,
Gordon
JI
.
Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome
.
Cell Host Microbe
.
2008
;
3
(
4
):
213
-
223
.
9.
Dicksved
J
,
Halfvarson
J
,
Rosenquist
M
, et al
.
Molecular analysis of the gut microbiota of identical twins with Crohn’s disease
.
ISME J
.
2008
;
2
(
7
):
716
-
727
.
10.
Gonzalez
A
,
Stombaugh
J
,
Lozupone
C
,
Turnbaugh
PJ
,
Gordon
JI
,
Knight
R
.
The mind-body-microbial continuum
.
Dialogues Clin Neurosci
.
2011
;
13
(
1
):
55
-
62
.
11.
Lupton
JR
.
Microbial degradation products influence colon cancer risk: the butyrate controversy
.
J Nutr
.
2004
;
134
(
2
):
479
-
482
.
12.
Riquelme
E
,
Zhang
Y
,
Zhang
L
, et al
.
Tumor microbiome diversity and composition influence pancreatic cancer outcomes
.
Cell
.
2019
;
178
(
4
):
795
-
806.e12
.
13.
Jones
JM
,
Wilson
R
,
Bealmear
PM
.
Mortality and gross pathology of secondary disease in germfree mouse radiation chimeras
.
Radiat Res
.
1971
;
45
(
3
):
577
-
588
.
14.
van Bekkum
DW
,
Roodenburg
J
,
Heidt
PJ
,
van der Waaij
D
.
Mitigation of secondary disease of allogeneic mouse radiation chimeras by modification of the intestinal microflora
.
J Natl Cancer Inst
.
1974
;
52
(
2
):
401
-
404
.
15.
Storb
R
,
Prentice
RL
,
Buckner
CD
, et al
.
Graft-versus-host disease and survival in patients with aplastic anemia treated by marrow grafts from HLA-identical siblings. Beneficial effect of a protective environment
.
N Engl J Med
.
1983
;
308
(
6
):
302
-
307
.
16.
Whangbo
J
,
Ritz
J
,
Bhatt
A
.
Antibiotic-mediated modification of the intestinal microbiome in allogeneic hematopoietic stem cell transplantation
.
Bone Marrow Transplant
.
2017
;
52
(
2
):
183
-
190
.
17.
Shono
Y
,
van den Brink
MRM
.
Gut microbiota injury in allogeneic haematopoietic stem cell transplantation
.
Nat Rev Cancer
.
2018
;
18
(
5
):
283
-
295
.
18.
Salipante
SJ
,
Sengupta
DJ
,
Rosenthal
C
, et al
.
Rapid 16S rRNA next-generation sequencing of polymicrobial clinical samples for diagnosis of complex bacterial infections
.
PLoS One
.
2013
;
8
(
5
):
e65226
.
19.
Morgan
XC
,
Huttenhower
C
.
Meta’omic analytic techniques for studying the intestinal microbiome
.
Gastroenterology
.
2014
;
146
(
6
):
1437
-
1448.e1
.
20.
Peled
JU
,
Hanash
AM
,
Jenq
RR
.
Role of the intestinal mucosa in acute gastrointestinal GVHD
.
Blood
.
2016
;
128
(
20
):
2395
-
2402
.
21.
Groschwitz
KR
,
Hogan
SP
.
Intestinal barrier function: molecular regulation and disease pathogenesis
.
J Allergy Clin Immunol
.
2009
;
124
(
1
):
3
-
20, NaN-22
.
22.
Crawford
PA
,
Gordon
JI
.
Microbial regulation of intestinal radiosensitivity
.
Proc Natl Acad Sci USA
.
2005
;
102
(
37
):
13254
-
13259
.
23.
Peterson
LW
,
Artis
D
.
Intestinal epithelial cells: regulators of barrier function and immune homeostasis
.
Nat Rev Immunol
.
2014
;
14
(
3
):
141
-
153
.
24.
Ayabe
T
,
Satchell
DP
,
Wilson
CL
,
Parks
WC
,
Selsted
ME
,
Ouellette
AJ
.
Secretion of microbicidal α-defensins by intestinal Paneth cells in response to bacteria
.
Nat Immunol
.
2000
;
1
(
2
):
113
-
118
.
25.
Bevins
CL
,
Salzman
NH
.
Paneth cells, antimicrobial peptides and maintenance of intestinal homeostasis
.
Nat Rev Microbiol
.
2011
;
9
(
5
):
356
-
368
.
26.
Sato
T
,
van Es
JH
,
Snippert
HJ
, et al
.
Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts
.
Nature
.
2011
;
469
(
7330
):
415
-
418
.
27.
Eriguchi
Y
,
Takashima
S
,
Oka
H
, et al
.
Graft-versus-host disease disrupts intestinal microbial ecology by inhibiting Paneth cell production of α-defensins
.
Blood
.
2012
;
120
(
1
):
223
-
231
.
28.
Levine
JE
,
Huber
E
,
Hammer
STG
, et al
.
Low Paneth cell numbers at onset of gastrointestinal graft-versus-host disease identify patients at high risk for nonrelapse mortality
.
Blood
.
2013
;
122
(
8
):
1505
-
1509
.
29.
Ferrara
JL
,
Harris
AC
,
Greenson
JK
, et al
.
Regenerating islet-derived 3-alpha is a biomarker of gastrointestinal graft-versus-host disease
.
Blood
.
2011
;
118
(
25
):
6702
-
6708
.
30.
Taur
Y
,
Jenq
RR
,
Ubeda
C
,
van den Brink
M
,
Pamer
EG
.
Role of intestinal microbiota in transplantation outcomes
.
Best Pract Res Clin Haematol
.
2015
;
28
(
2-3
):
155
-
161
.
31.
Jenq
RR
,
Ubeda
C
,
Taur
Y
, et al
.
Regulation of intestinal inflammation by microbiota following allogeneic bone marrow transplantation
.
J Exp Med
.
2012
;
209
(
5
):
903
-
911
.
32.
Jenq
RR
,
Taur
Y
,
Devlin
SM
, et al
.
Intestinal Blautia is associated with reduced death from graft-versus-host disease
.
Biol Blood Marrow Transplant
.
2015
;
21
(
8
):
1373
-
1383
.
33.
Taur
Y
,
Jenq
RR
,
Perales
MA
, et al
.
The effects of intestinal tract bacterial diversity on mortality following allogeneic hematopoietic stem cell transplantation
.
Blood
.
2014
;
124
(
7
):
1174
-
1182
.
34.
Holler
E
,
Butzhammer
P
,
Schmid
K
, et al
.
Metagenomic analysis of the stool microbiome in patients receiving allogeneic stem cell transplantation: loss of diversity is associated with use of systemic antibiotics and more pronounced in gastrointestinal graft-versus-host disease
.
Biol Blood Marrow Transplant
.
2014
;
20
(
5
):
640
-
645
.
35.
Peled
JU
,
Gomes
ALC
,
Devlin
SM
, et al
.
Microbiota as predictor of mortality in allogeneic hematopoietic-cell transplantation
.
N Engl J Med
.
2020
;
382
(
9
):
822
-
834
.
36.
Kamboj
M
,
Chung
D
,
Seo
SK
, et al
.
The changing epidemiology of vancomycin-resistant Enterococcus (VRE) bacteremia in allogeneic hematopoietic stem cell transplant (HSCT) recipients
.
Biol Blood Marrow Transplant
.
2010
;
16
(
11
):
1576
-
1581
.
37.
Taur
Y
,
Xavier
JB
,
Lipuma
L
, et al
.
Intestinal domination and the risk of bacteremia in patients undergoing allogeneic hematopoietic stem cell transplantation
.
Clin Infect Dis
.
2012
;
55
(
7
):
905
-
914
.
38.
Pfeiffer
JK
,
Virgin
HW
.
Viral immunity. Transkingdom control of viral infection and immunity in the mammalian intestine
.
Science
.
2016
;
351
(
6270
):
aad5872
.
39.
van der Velden
WJ
,
Plantinga
TS
,
Feuth
T
,
Donnelly
JP
,
Netea
MG
,
Blijlevens
NM
.
The incidence of acute graft-versus-host disease increases with Candida colonization depending the dectin-1 gene status
.
Clin Immunol
.
2010
;
136
(
2
):
302
-
306
.
40.
van der Velden
WJFM
,
Netea
M
,
de Haan
A
,
Huls
G
,
Donnelly
P
,
Blijlevens
NN
. Role of the mycobiome in human acute graft-versus-host disease.
Biol Blood Marrow Transplant
.
2019
;
19
(
2
):
329
-
332
.
41.
Shono
Y
,
Docampo
MD
,
Peled
JU
, et al
.
Increased GVHD-related mortality with broad-spectrum antibiotic use after allogeneic hematopoietic stem cell transplantation in human patients and mice
.
Sci Transl Med
.
2016
;
8
(
339
):
339ra71
.
42.
Weber
D
,
Oefner
PJ
,
Dettmer
K
, et al
.
Rifaximin preserves intestinal microbiota balance in patients undergoing allogeneic stem cell transplantation
.
Bone Marrow Transplant
.
2016
;
51
(
8
):
1087
-
1092
.
43.
Papadopoulou
A
,
Lloyd
DR
,
Williams
MD
,
Darbyshire
PJ
,
Booth
IW
.
Gastrointestinal and nutritional sequelae of bone marrow transplantation
.
Arch Dis Child
.
1996
;
75
(
3
):
208
-
213
.
44.
Schulte
C
,
Reinhardt
W
,
Beelen
D
,
Mann
K
,
Schaefer
U
.
Low T3-syndrome and nutritional status as prognostic factors in patients undergoing bone marrow transplantation
.
Bone Marrow Transplant
.
1998
;
22
(
12
):
1171
-
1178
.
45.
van der Meij
BS
,
de Graaf
P
,
Wierdsma
NJ
, et al
.
Nutritional support in patients with GVHD of the digestive tract: state of the art
.
Bone Marrow Transplant
.
2013
;
48
(
4
):
474
-
482
.
46.
van der Meij
BS
,
Wierdsma
NJ
,
Janssen
JJWM
,
Deutz
NEP
,
Visser
OJ
.
If the gut works, use it! But does the gut work in gastrointestinal GvHD?
Bone Marrow Transplant
.
2017
;
52
(
3
):
466
-
469
.
47.
Seguy
D
,
Berthon
C
,
Micol
JB
, et al
.
Enteral feeding and early outcomes of patients undergoing allogeneic stem cell transplantation following myeloablative conditioning
.
Transplantation
.
2006
;
82
(
6
):
835
-
839
.
48.
Svahn
BM
,
Remberger
M
,
Heijbel
M
, et al
.
Case-control comparison of at-home and hospital care for allogeneic hematopoietic stem-cell transplantation: the role of oral nutrition
.
Transplantation
.
2008
;
85
(
7
):
1000
-
1007
.
49.
Lemal
R
,
Cabrespine
A
,
Pereira
B
, et al
.
Could enteral nutrition improve the outcome of patients with haematological malignancies undergoing allogeneic haematopoietic stem cell transplantation? A study protocol for a randomized controlled trial (the NEPHA study)
.
Trials
.
2015
;
16
(
1
):
136
.
50.
Lye
AD
,
Hayslip
JW
.
Immunonutrition: does it have a role in improving recovery in patients receiving a stem cell transplant?
Nutr Cancer
.
2012
;
64
(
4
):
503
-
507
.
51.
Stein-Thoeringer
CK
,
Nichols
KB
,
Lazrak
A
, et al
.
Lactose drives Enterococcus expansion to promote graft-versus-host disease
.
Science
.
2019
;
366
(
6469
):
1143
-
1149
.
52.
Hill
GR
,
Ferrara
JL
.
The primacy of the gastrointestinal tract as a target organ of acute graft-versus-host disease: rationale for the use of cytokine shields in allogeneic bone marrow transplantation
.
Blood
.
2000
;
95
(
9
):
2754
-
2759
.
53.
Cook
DN
,
Pisetsky
DS
,
Schwartz
DA
.
Toll-like receptors in the pathogenesis of human disease
.
Nat Immunol
.
2004
;
5
(
10
):
975
-
979
.
54.
Song
DH
,
Lee
JO
.
Sensing of microbial molecular patterns by Toll-like receptors
.
Immunol Rev
.
2012
;
250
(
1
):
216
-
229
.
55.
Hidmark
A
,
von Saint Paul
A
,
Dalpke
AH
.
Cutting edge: TLR13 is a receptor for bacterial RNA
.
J Immunol
.
2012
;
189
(
6
):
2717
-
2721
.
56.
Shaw
MH
,
Reimer
T
,
Kim
YG
,
Nuñez
G
.
NOD-like receptors (NLRs): bona fide intracellular microbial sensors
.
Curr Opin Immunol
.
2008
;
20
(
4
):
377
-
382
.
57.
Lechtenberg
BC
,
Mace
PD
,
Riedl
SJ
.
Structural mechanisms in NLR inflammasome signaling
.
Curr Opin Struct Biol
.
2014
;
29
:
17
-
25
.
58.
Inohara
N
,
Ogura
Y
,
Chen
FF
,
Muto
A
,
Nuñez
G
.
Human Nod1 confers responsiveness to bacterial lipopolysaccharides
.
J Biol Chem
.
2001
;
276
(
4
):
2551
-
2554
.
59.
Toubai
T
,
Fujiwara
H
,
Rossi
C
, et al
.
Host NLRP6 exacerbates graft-versus-host disease independent of gut microbial composition
.
Nat Microbiol
.
2019
;
4
(
5
):
800
-
812
.
60.
Pillai
S
,
Netravali
IA
,
Cariappa
A
,
Mattoo
H
.
Siglecs and immune regulation
.
Annu Rev Immunol
.
2012
;
30
(
1
):
357
-
392
.
61.
Canani
RB
,
Costanzo
MD
,
Leone
L
,
Pedata
M
,
Meli
R
,
Calignano
A
.
Potential beneficial effects of butyrate in intestinal and extraintestinal diseases
.
World J Gastroenterol
.
2011
;
17
(
12
):
1519
-
1528
.
62.
Romick-Rosendale
L
,
Haslam
D
,
Lane
A
, et al
.
Short chain fatty acids are reduced after hematopoietic stem cell transplant in humans and are associated with modifications of the gut microbiome
.
Biol Blood Marrow Transplant
.
2018
;
24
(
3
):
S87
-
S88
.
63.
Mathewson
ND
,
Jenq
R
,
Mathew
AV
, et al
.
Gut microbiome-derived metabolites modulate intestinal epithelial cell damage and mitigate graft-versus-host disease [published correction appears in Nat Immunol. 2016;17(10):1235]
.
Nat Immunol
.
2016
;
17
(
5
):
505
-
513
.
64.
Atarashi
K
,
Tanoue
T
,
Oshima
K
, et al
.
Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota
.
Nature
.
2013
;
500
(
7461
):
232
-
236
.
65.
Furusawa
Y
,
Obata
Y
,
Fukuda
S
, et al
.
Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells [published correction appears in Nature;506(7487):254]
.
Nature
.
2013
;
504
(
7480
):
446
-
450
.
66.
Edinger
M
,
Powrie
F
,
Chakraverty
R
.
Regulatory mechanisms in graft-versus-host responses
.
Biol Blood Marrow Transplant
.
2009
;
15
(
suppl 1
):
2
-
6
.
67.
McDermott
AJ
,
Huffnagle
GB
.
The microbiome and regulation of mucosal immunity
.
Immunology
.
2014
;
142
(
1
):
24
-
31
.
68.
Qiu
J
,
Heller
JJ
,
Guo
X
, et al
.
The aryl hydrocarbon receptor regulates gut immunity through modulation of innate lymphoid cells
.
Immunity
.
2012
;
36
(
1
):
92
-
104
.
69.
Zelante
T
,
Iannitti
RG
,
Cunha
C
, et al
.
Tryptophan catabolites from microbiota engage aryl hydrocarbon receptor and balance mucosal reactivity via interleukin-22
.
Immunity
.
2013
;
39
(
2
):
372
-
385
.
70.
Lindemans
CA
,
Calafiore
M
,
Mertelsmann
AM
, et al
.
Interleukin-22 promotes intestinal-stem-cell-mediated epithelial regeneration
.
Nature
.
2015
;
528
(
7583
):
560
-
564
.
71.
Weber
D
,
Jenq
RR
,
Peled
JU
, et al
.
Microbiota disruption induced by early use of broad-spectrum antibiotics is an independent risk factor of outcome after allogeneic stem cell transplantation
.
Biol Blood Marrow Transplant
.
2017
;
23
(
5
):
845
-
852
.
72.
Schwab
L
,
Goroncy
L
,
Palaniyandi
S
, et al
.
Neutrophil granulocytes recruited upon translocation of intestinal bacteria enhance graft-versus-host disease via tissue damage
.
Nat Med
.
2014
;
20
(
6
):
648
-
654
.
73.
MacDonald
KP
,
Shlomchik
WD
,
Reddy
P
.
Biology of graft-versus-host responses: recent insights
.
Biol Blood Marrow Transplant
.
2013
;
19
(
suppl 1
):
S10
-
S14
.
74.
Koyama
M
,
Cheong
M
,
Markey
KA
, et al
.
Donor colonic CD103+ dendritic cells determine the severity of acute graft-versus-host disease
.
J Exp Med
.
2015
;
212
(
8
):
1303
-
1321
.
75.
Kim
TD
,
Terwey
TH
,
Zakrzewski
JL
, et al
.
Organ-derived dendritic cells have differential effects on alloreactive T cells
.
Blood
.
2008
;
111
(
5
):
2929
-
2940
.
76.
Reinhardt
K
,
Foell
D
,
Vogl
T
, et al
.
Monocyte-induced development of Th17 cells and the release of S100 proteins are involved in the pathogenesis of graft-versus-host disease
.
J Immunol
.
2014
;
193
(
7
):
3355
-
3365
.
77.
Spits
H
,
Artis
D
,
Colonna
M
, et al
.
Innate lymphoid cells--a proposal for uniform nomenclature
.
Nat Rev Immunol
.
2013
;
13
(
2
):
145
-
149
.
78.
Hanash
AM
,
Dudakov
JA
,
Hua
G
, et al
.
Interleukin-22 protects intestinal stem cells from immune-mediated tissue damage and regulates sensitivity to graft versus host disease
.
Immunity
.
2012
;
37
(
2
):
339
-
350
.
79.
Klose
CS
,
Artis
D
.
Innate lymphoid cells as regulators of immunity, inflammation and tissue homeostasis
.
Nat Immunol
.
2016
;
17
(
7
):
765
-
774
.
80.
Hepworth
MR
,
Monticelli
LA
,
Fung
TC
, et al
.
Innate lymphoid cells regulate CD4+ T-cell responses to intestinal commensal bacteria
.
Nature
.
2013
;
498
(
7452
):
113
-
117
.
81.
Koyama
M
,
Mukhopadhyay
P
,
Schuster
IS
, et al
.
MHC class II antigen presentation by the intestinal epithelium initiates graft-versus-host disease and is influenced by the microbiota
.
Immunity
.
2019
;
51
(
5
):
885
-
898.e7
.
82.
Round
JL
,
Lee
SM
,
Li
J
, et al
.
The Toll-like receptor 2 pathway establishes colonization by a commensal of the human microbiota
.
Science
.
2011
;
332
(
6032
):
974
-
977
.
83.
Ivanov
II
,
Atarashi
K
,
Manel
N
, et al
.
Induction of intestinal Th17 cells by segmented filamentous bacteria
.
Cell
.
2009
;
139
(
3
):
485
-
498
.
84.
Luzza
F
,
Parrello
T
,
Monteleone
G
, et al
.
Up-regulation of IL-17 is associated with bioactive IL-8 expression in Helicobacter pylori-infected human gastric mucosa
.
J Immunol
.
2000
;
165
(
9
):
5332
-
5337
.
85.
Ivanov
II
,
Frutos
RL
,
Manel
N
, et al
.
Specific microbiota direct the differentiation of IL-17-producing T-helper cells in the mucosa of the small intestine
.
Cell Host Microbe
.
2008
;
4
(
4
):
337
-
349
.
86.
Ratajczak
P
,
Janin
A
,
Peffault de Latour
R
, et al
.
Th17/Treg ratio in human graft-versus-host disease
.
Blood
.
2010
;
116
(
7
):
1165
-
1171
.
87.
Betts
BC
,
Sagatys
EM
,
Veerapathran
A
, et al
.
CD4+ T cell STAT3 phosphorylation precedes acute GVHD, and subsequent Th17 tissue invasion correlates with GVHD severity and therapeutic response
.
J Leukoc Biol
.
2015
;
97
(
4
):
807
-
819
.
88.
Tawara
I
,
Koyama
M
,
Liu
C
, et al
.
Interleukin-6 modulates graft-versus-host responses after experimental allogeneic bone marrow transplantation
.
Clin Cancer Res
.
2011
;
17
(
1
):
77
-
88
.
89.
Gartlan
KH
,
Markey
KA
,
Varelias
A
, et al
.
Tc17 cells are a proinflammatory, plastic lineage of pathogenic CD8+ T cells that induce GVHD without antileukemic effects
.
Blood
.
2015
;
126
(
13
):
1609
-
1620
.
90.
Tajima
M
,
Wakita
D
,
Noguchi
D
, et al
.
IL-6-dependent spontaneous proliferation is required for the induction of colitogenic IL-17-producing CD8+ T cells
.
J Exp Med
.
2008
;
205
(
5
):
1019
-
1027
.
91.
Wesemann
DR
,
Portuguese
AJ
,
Meyers
RM
, et al
.
Microbial colonization influences early B-lineage development in the gut lamina propria
.
Nature
.
2013
;
501
(
7465
):
112
-
115
.
92.
Kamada
N
,
Núñez
G
.
Regulation of the immune system by the resident intestinal bacteria
.
Gastroenterology
.
2014
;
146
(
6
):
1477
-
1488
.
93.
Shono
Y
,
Docampo
MD
,
Peled
JU
, et al
.
Increased GVHD-related mortality with broad-spectrum antibiotic use after allogeneic hematopoietic stem cell transplantation in human patients and mice
.
Sci Transl Med
.
2016
;
8
(
339
):
339ra371
.
94.
Bouazzaoui
A
,
Huber
E
,
Dan
A
, et al
.
Reduction of aGVHD using chicken antibodies directed against intestinal pathogens in a murine model
.
Blood
.
2017
;
129
(
8
):
1052
-
1055
.
95.
Roberfroid
MB
.
Introducing inulin-type fructans
.
Br J Nutr
.
2005
;
93
(
suppl 1
):
S13
-
S25
.
96.
Andermann
TM
,
Rezvani
A
,
Bhatt
AS
.
Microbiota manipulation with prebiotics and probiotics in patients undergoing stem cell transplantation
.
Curr Hematol Malig Rep
.
2016
;
11
(
1
):
19
-
28
.
97.
Smith
PM
,
Howitt
MR
,
Panikov
N
, et al
.
The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis
.
Science
.
2013
;
341
(
6145
):
569
-
573
.
98.
Peng
L
,
He
Z
,
Chen
W
,
Holzman
IR
,
Lin
J
.
Effects of butyrate on intestinal barrier function in a Caco-2 cell monolayer model of intestinal barrier
.
Pediatr Res
.
2007
;
61
(
1
):
37
-
41
.
99.
Maslowski
KM
,
Vieira
AT
,
Ng
A
, et al
.
Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43
.
Nature
.
2009
;
461
(
7268
):
1282
-
1286
.
100.
Lecerf
JM
,
Dépeint
F
,
Clerc
E
, et al
.
Xylo-oligosaccharide (XOS) in combination with inulin modulates both the intestinal environment and immune status in healthy subjects, while XOS alone only shows prebiotic properties
.
Br J Nutr
.
2012
;
108
(
10
):
1847
-
1858
.
101.
Childs
CE
,
Röytiö
H
,
Alhoniemi
E
, et al
.
Xylo-oligosaccharides alone or in synbiotic combination with Bifidobacterium animalis subsp. lactis induce bifidogenesis and modulate markers of immune function in healthy adults: a double-blind, placebo-controlled, randomised, factorial cross-over study
.
Br J Nutr
.
2014
;
111
(
11
):
1945
-
1956
.
102.
Bouhnik
Y
,
Raskine
L
,
Simoneau
G
, et al
.
The capacity of nondigestible carbohydrates to stimulate fecal bifidobacteria in healthy humans: a double-blind, randomized, placebo-controlled, parallel-group, dose-response relation study
.
Am J Clin Nutr
.
2004
;
80
(
6
):
1658
-
1664
.
103.
Gerbitz
A
,
Schultz
M
,
Wilke
A
, et al
.
Probiotic effects on experimental graft-versus-host disease: let them eat yogurt
.
Blood
.
2004
;
103
(
11
):
4365
-
4367
.
104.
Gorshein
E
,
Wei
C
,
Ambrosy
S
, et al
.
Lactobacillus rhamnosus GG probiotic enteric regimen does not appreciably alter the gut microbiome or provide protection against GVHD after allogeneic hematopoietic stem cell transplantation
.
Clin Transplant
.
2017
;
31
(
5
):
e12947
.
105.
Mehta
A
,
Rangarajan
S
,
Borate
U
.
A cautionary tale for probiotic use in hematopoietic SCT patients-Lactobacillus acidophilus sepsis in a patient with mantle cell lymphoma undergoing hematopoietic SCT
.
Bone Marrow Transplant
.
2013
;
48
(
3
):
461
-
462
.
106.
Fukuda
S
,
Toh
H
,
Hase
K
, et al
.
Bifidobacteria can protect from enteropathogenic infection through production of acetate
.
Nature
.
2011
;
469
(
7331
):
543
-
547
.
107.
Sivan
A
,
Corrales
L
,
Hubert
N
, et al
.
Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy
.
Science
.
2015
;
350
(
6264
):
1084
-
1089
.
108.
Kim
SG
,
Becattini
S
,
Moody
TU
, et al
.
Microbiota-derived lantibiotic restores resistance against vancomycin-resistant Enterococcus
.
Nature
.
2019
;
572
(
7771
):
665
-
669
.
109.
Klemashevich
C
,
Wu
C
,
Howsmon
D
,
Alaniz
RC
,
Lee
K
,
Jayaraman
A
.
Rational identification of diet-derived postbiotics for improving intestinal microbiota function
.
Curr Opin Biotechnol
.
2014
;
26
:
85
-
90
.
110.
Swimm
A
,
Giver
CR
,
DeFilipp
Z
, et al
.
Indoles derived from intestinal microbiota act via type I interferon signaling to limit graft-versus-host disease
.
Blood
.
2018
;
132
(
23
):
2506
-
2519
.
111.
Drekonja
D
,
Reich
J
,
Gezahegn
S
, et al
.
Fecal microbiota transplantation for Clostridium difficile infection: a systematic review
.
Ann Intern Med
.
2015
;
162
(
9
):
630
-
638
.
112.
DeFilipp
Z
,
Peled
JU
,
Li
S
, et al
.
Third-party fecal microbiota transplantation following allo-HCT reconstitutes microbiome diversity
.
Blood Adv
.
2018
;
2
(
7
):
745
-
753
.
113.
Taur
Y
,
Coyte
K
,
Schluter
J
, et al
.
Reconstitution of the gut microbiota of antibiotic-treated patients by autologous fecal microbiota transplant
.
Sci Transl Med
.
2018
;
10
(
460
):
eaap9489
.
114.
Quera
R
,
Espinoza
R
,
Estay
C
,
Rivera
D
.
Bacteremia as an adverse event of fecal microbiota transplantation in a patient with Crohn’s disease and recurrent Clostridium difficile infection
.
J Crohn’s Colitis
.
2014
;
8
(
3
):
252
-
253
.
115.
Schwartz
M
,
Gluck
M
,
Koon
S
.
Norovirus gastroenteritis after fecal microbiota transplantation for treatment of Clostridium difficile infection despite asymptomatic donors and lack of sick contacts
.
Am J Gastroenterol
.
2013
;
108
(
8
):
1367
.
116.
Chang
BW
,
Rezaie
A
.
Irritable bowel syndrome-like symptoms following fecal microbiota transplantation: a possible donor-dependent complication
.
Am J Gastroenterol
.
2017
;
112
(
1
):
186
-
187
.
117.
DeFilipp
Z
,
Bloom
PP
,
Torres Soto
M
, et al
.
Drug-resistant E. coli bacteremia transmitted by fecal microbiota transplant
.
N Engl J Med
.
2019
;
381
(
21
):
2043
-
2050
.
118.
Peled
JU
,
Devlin
SM
,
Staffas
A
, et al
.
Intestinal microbiota and relapse after hematopoietic-cell transplantation
.
J Clin Oncol
.
2017
;
35
(
15
):
1650
-
1659
.
119.
Pasolli
E
,
Asnicar
F
,
Manara
S
, et al
.
Extensive unexplored human microbiome diversity revealed by over 150,000 genomes from metagenomes spanning age, geography, and lifestyle
.
Cell
.
2019
;
176
(
3
):
649
-
662.e20
.
120.
Integrative HMP (iHMP) Research Network Consortium
.
The Integrative Human Microbiome Project
.
Nature
.
2019
;
569
(
7758
):
641
-
648
.
121.
Michonneau
D
,
Latis
E
,
Curis
E
, et al
.
Metabolomics analysis of human acute graft-versus-host disease reveals changes in host and microbiota-derived metabolites
.
Nat Commun
.
2019
;
10
(
1
):
5695
.
You do not currently have access to this content.

Sign in via your Institution

Sign In