Key Points

  • NUP98-fusion proteins directly regulate leukemia-associated gene expression programs in AML.

  • CDK6 expression is under direct transcriptional control of NUP98-fusions, and NUP98-fusion AML is particularly sensitive to CDK6 inhibition.

Abstract

Fusion proteins involving Nucleoporin 98 (NUP98) are recurrently found in acute myeloid leukemia (AML) and are associated with poor prognosis. Lack of mechanistic insight into NUP98-fusion–dependent oncogenic transformation has so far precluded the development of rational targeted therapies. We reasoned that different NUP98-fusion proteins deregulate a common set of transcriptional targets that might be exploitable for therapy. To decipher transcriptional programs controlled by diverse NUP98-fusion proteins, we developed mouse models for regulatable expression of NUP98/NSD1, NUP98/JARID1A, and NUP98/DDX10. By integrating chromatin occupancy profiles of NUP98-fusion proteins with transcriptome profiling upon acute fusion protein inactivation in vivo, we defined the core set of direct transcriptional targets of NUP98-fusion proteins. Among those, CDK6 was highly expressed in murine and human AML samples. Loss of CDK6 severely attenuated NUP98-fusion–driven leukemogenesis, and NUP98-fusion AML was sensitive to pharmacologic CDK6 inhibition in vitro and in vivo. These findings identify CDK6 as a conserved, critical direct target of NUP98-fusion proteins, proposing CDK4/CDK6 inhibitors as a new rational treatment option for AML patients with NUP98-fusions.

REFERENCES

1.
Gough
SM
,
Slape
CI
,
Aplan
PD
.
NUP98 gene fusions and hematopoietic malignancies: common themes and new biologic insights
.
Blood
.
2011
;
118
(
24
):
6247
-
6257
.
2.
Hollink
IHIM
,
van den Heuvel-Eibrink
MM
,
Arentsen-Peters
STCJM
, et al
.
NUP98/NSD1 characterizes a novel poor prognostic group in acute myeloid leukemia with a distinct HOX gene expression pattern
.
Blood
.
2011
;
118
(
13
):
3645
-
3656
.
3.
Struski
S
,
Lagarde
S
,
Bories
P
, et al
.
NUP98 is rearranged in 3.8% of pediatric AML forming a clinical and molecular homogenous group with a poor prognosis
.
Leukemia
.
2017
;
31
(
3
):
565
-
572
.
4.
Bolouri
H
,
Farrar
JE
,
Triche
T
Jr.
, et al
.
The molecular landscape of pediatric acute myeloid leukemia reveals recurrent structural alterations and age-specific mutational interactions [published correction appears in Nat Med. 2018;24(1):526]
.
Nat Med
.
2018
;
24
(
1
):
103
-
112
.
5.
Jaju
RJ
,
Fidler
C
,
Haas
OA
, et al
.
A novel gene, NSD1, is fused to NUP98 in the t(5;11)(q35;p15.5) in de novo childhood acute myeloid leukemia
.
Blood
.
2001
;
98
(
4
):
1264
-
1267
.
6.
de Rooij
JDE
,
Hollink
IHIM
,
Arentsen-Peters
STCJM
, et al
.
NUP98/JARID1A is a novel recurrent abnormality in pediatric acute megakaryoblastic leukemia with a distinct HOX gene expression pattern
.
Leukemia
.
2013
;
27
(
12
):
2280
-
2288
.
7.
Romana
SP
,
Radford-Weiss
I
,
Ben Abdelali
R
, et al;
Groupe Francophone de Cytogénétique Hématologique
.
NUP98 rearrangements in hematopoietic malignancies: a study of the Groupe Francophone de Cytogénétique Hématologique
.
Leukemia
.
2006
;
20
(
4
):
696
-
706
.
8.
Lavallée
V-P
,
Lemieux
S
,
Boucher
G
, et al
.
Identification of MYC mutations in acute myeloid leukemias with NUP98-NSD1 translocations
.
Leukemia
.
2016
;
30
(
7
):
1621
-
1624
.
9.
Wang
GG
,
Cai
L
,
Pasillas
MP
,
Kamps
MP
.
NUP98-NSD1 links H3K36 methylation to Hox-A gene activation and leukaemogenesis
.
Nat Cell Biol
.
2007
;
9
(
7
):
804
-
812
.
10.
Wang
GG
,
Song
J
,
Wang
Z
, et al
.
Haematopoietic malignancies caused by dysregulation of a chromatin-binding PHD finger
.
Nature
.
2009
;
459
(
7248
):
847
-
851
.
11.
Gough
SM
,
Lee
F
,
Yang
F
, et al
.
NUP98-PHF23 is a chromatin-modifying oncoprotein that causes a wide array of leukemias sensitive to inhibition of PHD histone reader function
.
Cancer Discov
.
2014
;
4
(
5
):
564
-
577
.
12.
Thanasopoulou
A
,
Tzankov
A
,
Schwaller
J
.
Potent co-operation between the NUP98-NSD1 fusion and the FLT3-ITD mutation in acute myeloid leukemia induction
.
Haematologica
.
2014
;
99
(
9
):
1465
-
1471
.
13.
Dash
AB
,
Williams
IR
,
Kutok
JL
, et al
.
A murine model of CML blast crisis induced by cooperation between BCR/ABL and NUP98/HOXA9
.
Proc Natl Acad Sci USA
.
2002
;
99
(
11
):
7622
-
7627
.
14.
Franks
TM
,
Hetzer
MW
.
The role of Nup98 in transcription regulation in healthy and diseased cells
.
Trends Cell Biol
.
2013
;
23
(
3
):
112
-
117
.
15.
Kasper
LH
,
Brindle
PK
,
Schnabel
CA
,
Pritchard
CE
,
Cleary
ML
,
van Deursen
JM
.
CREB binding protein interacts with nucleoporin-specific FG repeats that activate transcription and mediate NUP98-HOXA9 oncogenicity
.
Mol Cell Biol
.
1999
;
19
(
1
):
764
-
776
.
16.
Bai
XT
,
Gu
BW
,
Yin
T
, et al
.
Trans-repressive effect of NUP98-PMX1 on PMX1-regulated c-FOS gene through recruitment of histone deacetylase 1 by FG repeats
.
Cancer Res
.
2006
;
66
(
9
):
4584
-
4590
.
17.
Franks
TM
,
McCloskey
A
,
Shokirev
MN
,
Benner
C
,
Rathore
A
,
Hetzer
MW
.
Nup98 recruits the Wdr82-Set1A/COMPASS complex to promoters to regulate H3K4 trimethylation in hematopoietic progenitor cells
.
Genes Dev
.
2017
;
31
(
22
):
2222
-
2234
.
18.
Fahrenkrog
B
,
Martinelli
V
,
Nilles
N
, et al
.
Expression of leukemia-associated Nup98 fusion proteins generates an aberrant nuclear envelope phenotype
.
PLoS One
.
2016
;
11
(
3
):
e0152321
.
19.
Xu
H
,
Valerio
DG
,
Eisold
ME
, et al
.
NUP98 fusion proteins interact with the NSL and MLL1 complexes to drive leukemogenesis
.
Cancer Cell
.
2016
;
30
(
6
):
863
-
878
.
20.
Yassin
ER
,
Abdul-Nabi
AM
,
Takeda
A
,
Yaseen
NR
.
Effects of the NUP98-DDX10 oncogene on primary human CD34+ cells: role of a conserved helicase motif
.
Leukemia
.
2010
;
24
(
5
):
1001
-
1011
.
21.
Kogan
SC
,
Ward
JM
,
Anver
MR
, et al;
Hematopathology subcommittee of the Mouse Models of Human Cancers Consortium
.
Bethesda proposals for classification of nonlymphoid hematopoietic neoplasms in mice
.
Blood
.
2002
;
100
(
1
):
238
-
245
.
22.
Lara-Astiaso
D
,
Weiner
A
,
Lorenzo-Vivas
E
, et al
.
Chromatin state dynamics during blood formation
.
Science
.
2014
;
345
(
6199
):
943
-
950
.
23.
Alharbi
RA
,
Pettengell
R
,
Pandha
HS
,
Morgan
R
.
The role of HOX genes in normal hematopoiesis and acute leukemia
.
Leukemia
.
2013
;
27
(
5
):
1000
-
1008
.
24.
Konopleva
M
,
Contractor
R
,
Tsao
T
, et al
.
Mechanisms of apoptosis sensitivity and resistance to the BH3 mimetic ABT-737 in acute myeloid leukemia
.
Cancer Cell
.
2006
;
10
(
5
):
375
-
388
.
25.
Placke
T
,
Faber
K
,
Nonami
A
, et al
.
Requirement for CDK6 in MLL-rearranged acute myeloid leukemia
.
Blood
.
2014
;
124
(
1
):
13
-
23
.
26.
Zuber
J
,
McJunkin
K
,
Fellmann
C
, et al
.
Toolkit for evaluating genes required for proliferation and survival using tetracycline-regulated RNAi
.
Nat Biotechnol
.
2011
;
29
(
1
):
79
-
83
.
27.
Martinez-Soria
N
,
McKenzie
L
,
Draper
J
, et al
.
The oncogenic transcription factor RUNX1/ETO corrupts cell cycle regulation to drive leukemic transformation [published correction appears in Cancer Cell. 2019;35(4):705]
.
Cancer Cell
.
2018
;
34
(
4
):
626
-
642.e8
.
28.
Uras
IZ
,
Walter
GJ
,
Scheicher
R
, et al
.
Palbociclib treatment of FLT3-ITD+ AML cells uncovers a kinase-dependent transcriptional regulation of FLT3 and PIM1 by CDK6
.
Blood
.
2016
;
127
(
23
):
2890
-
2902
.
29.
Otto
T
,
Sicinski
P
.
Cell cycle proteins as promising targets in cancer therapy
.
Nat Rev Cancer
.
2017
;
17
(
2
):
93
-
115
.
30.
Wang
H
,
Nicolay
BN
,
Chick
JM
, et al
.
The metabolic function of cyclin D3-CDK6 kinase in cancer cell survival
.
Nature
.
2017
;
546
(
7658
):
426
-
430
.
31.
Scheicher
R
,
Hoelbl-Kovacic
A
,
Bellutti
F
, et al
.
CDK6 as a key regulator of hematopoietic and leukemic stem cell activation [published correction appears in Blood. 2018;132(9):978-979]
.
Blood
.
2015
;
125
(
1
):
90
-
101
.
32.
Kollmann
K
,
Heller
G
,
Schneckenleithner
C
, et al
.
A kinase-independent function of CDK6 links the cell cycle to tumor angiogenesis [published correction appears in Cancer Cell. 2016;30(2):359-360]
.
Cancer Cell
.
2013
;
24
(
2
):
167
-
181
.
33.
Bellutti
F
,
Tigan
AS
,
Nebenfuehr
S
, et al
.
CDK6 antagonizes P53-induced responses during tumorigenesis
.
Cancer Discov
.
2018
;
8
(
7
):
884
-
897
.
34.
Condorelli
R
,
Spring
L
,
O’Shaughnessy
J
, et al
.
Polyclonal RB1 mutations and acquired resistance to CDK 4/6 inhibitors in patients with metastatic breast cancer
.
Ann Oncol
.
2018
;
29
(
3
):
640
-
645
.
35.
Brehme
M
,
Hantschel
O
,
Colinge
J
, et al
.
Charting the molecular network of the drug target Bcr-Abl
.
Proc Natl Acad Sci USA
.
2009
;
106
(
18
):
7414
-
7419
.
36.
Skucha
A
,
Ebner
J
,
Schmöllerl
J
, et al
.
MLL-fusion-driven leukemia requires SETD2 to safeguard genomic integrity
.
Nat Commun
.
2018
;
9
(
1
):
1983
.
37.
Boulay
G
,
Sandoval
GJ
,
Riggi
N
, et al
.
Cancer-specific retargeting of BAF complexes by a prion-like domain
.
Cell
.
2017
;
171
(
1
):
163
-
178.e19
.
38.
McBride
MJ
,
Pulice
JL
,
Beird
HC
, et al
.
The SS18-SSX fusion oncoprotein hijacks BAF complex targeting and function to drive synovial sarcoma
.
Cancer Cell
.
2018
;
33
(
6
):
1128
-
1141.e7
.
39.
Shima
Y
,
Yumoto
M
,
Katsumoto
T
,
Kitabayashi
I
.
MLL is essential for NUP98-HOXA9-induced leukemia
.
Leukemia
.
2017
;
31
(
10
):
2200
-
2210
.
40.
Iwasaki
M
,
Liedtke
M
,
Gentles
AJ
,
Cleary
ML
.
CD93 marks a non-quiescent human leukemia stem cell population and is required for development of MLL-rearranged acute myeloid leukemia
.
Cell Stem Cell
.
2015
;
17
(
4
):
412
-
421
.
41.
Coustan-Smith
E
,
Song
G
,
Shurtleff
S
, et al
.
Universal monitoring of minimal residual disease in acute myeloid leukemia
.
JCI Insight
.
2018
;
3
(
9
):
e98561
.
42.
Ma
P
,
Yang
X
,
Kong
Q
, et al
.
The ubiquitin ligase RNF220 enhances canonical Wnt signaling through USP7-mediated deubiquitination of β-catenin
.
Mol Cell Biol
.
2014
;
34
(
23
):
4355
-
4366
.
43.
Wang
Y
,
Krivtsov
AV
,
Sinha
AU
, et al
.
The wnt/beta-catenin pathway is required for the development of leukemia stem cells in AML
.
Science
.
2010
;
327
(
5973
):
1650
-
1653
.
44.
Pattabiraman
DR
,
Gonda
TJ
.
Role and potential for therapeutic targeting of MYB in leukemia
.
Leukemia
.
2013
;
27
(
2
):
269
-
277
.
45.
Zhong
X
,
Prinz
A
,
Steger
J
, et al
.
HoxA9 transforms murine myeloid cells by a feedback loop driving expression of key oncogenes and cell cycle control genes
.
Blood Adv
.
2018
;
2
(
22
):
3137
-
3148
.
46.
Konopleva
M
,
Letai
A
.
BCL-2 inhibition in AML: an unexpected bonus?
Blood
.
2018
;
132
(
10
):
1007
-
1012
.
You do not currently have access to this content.

Sign in via your Institution

Sign In