Key Points

  • Many properties are shared between the lamprey and human NPRL3-linked HB locus, including a remote erythroid enhancer in intron 7 of NPRL3.

  • Linkage of multiple globin genes to the same adjacent gene explains how hemoglobins could undergo convergent evolution in different species

Abstract

The oxygen transport function of hemoglobin (HB) is thought to have arisen ∼500 million years ago, roughly coinciding with the divergence between jawless (Agnatha) and jawed (Gnathostomata) vertebrates. Intriguingly, extant HBs of jawless and jawed vertebrates were shown to have evolved twice, and independently, from different ancestral globin proteins. This raises the question of whether erythroid-specific expression of HB also evolved twice independently. In all jawed vertebrates studied to date, one of the HB gene clusters is linked to the widely expressed NPRL3 gene. Here we show that the nprl3-linked hb locus of a jawless vertebrate, the river lamprey (Lampetra fluviatilis), shares a range of structural and functional properties with the equivalent jawed vertebrate HB locus. Functional analysis demonstrates that an erythroid-specific enhancer is located in intron 7 of lamprey nprl3, which corresponds to the NPRL3 intron 7 MCS-R1 enhancer of jawed vertebrates. Collectively, our findings signify the presence of an nprl3-linked multiglobin gene locus, which contains a remote enhancer that drives globin expression in erythroid cells, before the divergence of jawless and jawed vertebrates. Different globin genes from this ancestral cluster evolved in the current NPRL3-linked HB genes in jawless and jawed vertebrates. This provides an explanation of the enigma of how, in different species, globin genes linked to the same adjacent gene could undergo convergent evolution.

REFERENCES

REFERENCES
1.
Philipsen
S
,
Hardison
RC
.
Evolution of hemoglobin loci and their regulatory elements
.
Blood Cells Mol Dis
.
2018
;
70
:
2
-
12
.
2.
Gell
DA
.
Structure and function of haemoglobins
.
Blood Cells Mol Dis
.
2018
;
70
:
13
-
42
.
3.
Hardison
RC
.
Evolution of hemoglobin and its genes
.
Cold Spring Harb Perspect Med
.
2012
;
2
(
12
):
a011627
.
4.
Hardison
RC
.
A brief history of hemoglobins: plant, animal, protist, and bacteria
.
Proc Natl Acad Sci U S A
.
1996
;
93
(
12
):
5675
-
5679
.
5.
Gardner
PR
,
Gardner
AM
,
Martin
LA
,
Salzman
AL
.
Nitric oxide dioxygenase: an enzymic function for flavohemoglobin
.
Proc Natl Acad Sci U S A
.
1998
;
95
(
18
):
10378
-
10383
.
6.
Minning
DM
,
Gow
AJ
,
Bonaventura
J
, et al
.
Ascaris haemoglobin is a nitric oxide-activated “deoxygenase”
.
Nature
.
1999
;
401
(
6752
):
497
-
502
.
7.
Gros
G
,
Wittenberg
BA
,
Jue
T
.
Myoglobin’s old and new clothes: from molecular structure to function in living cells
.
J Exp Biol
.
2010
;
213
(
Pt 16
):
2713
-
2725
.
8.
Hoffmann
FG
,
Opazo
JC
,
Storz
JF
.
Gene cooption and convergent evolution of oxygen transport hemoglobins in jawed and jawless vertebrates
.
Proc Natl Acad Sci U S A
.
2010
;
107
(
32
):
14274
-
14279
.
9.
Blair
JE
,
Hedges
SB
.
Molecular phylogeny and divergence times of deuterostome animals
.
Mol Biol Evol
.
2005
;
22
(
11
):
2275
-
2284
.
10.
Smith
JJ
,
Kuraku
S
,
Holt
C
, et al
.
Sequencing of the sea lamprey (Petromyzon marinus) genome provides insights into vertebrate evolution
.
Nat Genet
.
2013
;
45
(
4
):
415
-
421, e1-e2
.
11.
Goodman
M
,
Pedwaydon
J
,
Czelusniak
J
, et al
.
An evolutionary tree for invertebrate globin sequences
.
J Mol Evol
.
1988
;
27
(
3
):
236
-
249
.
12.
Katoh
K
,
Miyata
T
.
Cyclostome hemoglobins are possibly paralogous to gnathostome hemoglobins
.
J Mol Evol
.
2002
;
55
(
2
):
246
-
249
.
13.
Schwarze
K
,
Campbell
KL
,
Hankeln
T
,
Storz
JF
,
Hoffmann
FG
,
Burmester
T
.
The globin gene repertoire of lampreys: convergent evolution of hemoglobin and myoglobin in jawed and jawless vertebrates
.
Mol Biol Evol
.
2014
;
31
(
10
):
2708
-
2721
.
14.
Flint
J
,
Tufarelli
C
,
Peden
J
, et al
.
Comparative genome analysis delimits a chromosomal domain and identifies key regulatory elements in the alpha globin cluster
.
Hum Mol Genet
.
2001
;
10
(
4
):
371
-
382
.
15.
Hughes
JR
,
Cheng
JF
,
Ventress
N
, et al
.
Annotation of cis-regulatory elements by identification, subclassification, and functional assessment of multispecies conserved sequences
.
Proc Natl Acad Sci U S A
.
2005
;
102
(
28
):
9830
-
9835
.
16.
Hay
D
,
Hughes
JR
,
Babbs
C
, et al
.
Genetic dissection of the α-globin super-enhancer in vivo
.
Nat Genet
.
2016
;
48
(
8
):
895
-
903
.
17.
Burge
C
,
Karlin
S
.
Prediction of complete gene structures in human genomic DNA
.
J Mol Biol
.
1997
;
268
(
1
):
78
-
94
.
18.
Altschul
SF
,
Madden
TL
,
Schäffer
AA
, et al
.
Gapped BLAST and PSI-BLAST: a new generation of protein database search programs
.
Nucleic Acids Res
.
1997
;
25
(
17
):
3389
-
3402
.
19.
Altschul
SF
,
Gish
W
,
Miller
W
,
Myers
EW
,
Lipman
DJ
.
Basic local alignment search tool
.
J Mol Biol
.
1990
;
215
(
3
):
403
-
410
.
20.
Elnitski
L
,
Riemer
C
,
Schwartz
S
,
Hardison
R
,
Miller
W
.
PipMaker: a World Wide Web server for genomic sequence alignments
.
Curr Protoc Bioinformatics
.
2003
;
Chapter 10:Unit 10.2
.
21.
Brudno
M
,
Do
CB
,
Cooper
GM
, et al;
NISC Comparative Sequencing Program
.
LAGAN and Multi-LAGAN: efficient tools for large-scale multiple alignment of genomic DNA
.
Genome Res
.
2003
;
13
(
4
):
721
-
731
.
22.
Mayor
C
,
Brudno
M
,
Schwartz
JR
, et al
.
VISTA: visualizing global DNA sequence alignments of arbitrary length
.
Bioinformatics
.
2000
;
16
(
11
):
1046
-
1047
.
23.
Gillemans
N
,
McMorrow
T
,
Tewari
R
, et al
.
Functional and comparative analysis of globin loci in pufferfish and humans
.
Blood
.
2003
;
101
(
7
):
2842
-
2849
.
24.
Ellis
J
,
Tan-Un
KC
,
Harper
A
, et al
.
A dominant chromatin-opening activity in 5′ hypersensitive site 3 of the human beta-globin locus control region
.
EMBO J
.
1996
;
15
(
3
):
562
-
568
.
25.
Buenrostro
JD
,
Wu
B
,
Chang
HY
,
Greenleaf
WJ
.
ATAC-seq: A method for assaying chromatin accessibility genome-wide
.
Curr Protoc Mol Biol
.
2015
;
109
:
21.29.1
-
21.29.9
.
26.
Parker
HJ
,
Bronner
ME
,
Krumlauf
R
.
A Hox regulatory network of hindbrain segmentation is conserved to the base of vertebrates
.
Nature
.
2014
;
514
(
7523
):
490
-
493
.
27.
Hockman
D
,
Chong-Morrison
V
,
Green
SA
, et al
.
A genome-wide assessment of the ancestral neural crest gene regulatory network
.
Nat Commun
.
2019
;
10
(
1
):
4689
.
28.
Parker
HJ
,
Sauka-Spengler
T
,
Bronner
M
,
Elgar
G
.
A reporter assay in lamprey embryos reveals both functional conservation and elaboration of vertebrate enhancers
.
PLoS One
.
2014
;
9
(
1
):
e85492
.
29.
Kawakami
K
.
Transgenesis and gene trap methods in zebrafish by using the Tol2 transposable element
.
Methods Cell Biol
.
2004
;
77
:
201
-
222
.
30.
Lanfranchi
G
,
Pallavicini
A
,
Laveder
P
,
Valle
G
.
Ancestral hemoglobin switching in lampreys
.
Dev Biol
.
1994
;
164
(
2
):
402
-
408
.
31.
Sambrook
J
,
Russell
DW
.
Molecular Cloning: A Laboratory Manual
. 3rd ed.
Woodbury, NY
:
Cold Spring Harbor Laboratory Press
;
2001
.
32.
Lanfranchi
G
,
Odorizzi
S
,
Laveder
P
,
Valle
G
.
Different globin messenger RNAs are present before and after the metamorphosis in Lampetra zanandreai
.
Dev Biol
.
1991
;
145
(
2
):
367
-
373
.
33.
Rohlfing
K
,
Stuhlmann
F
,
Docker
MF
,
Burmester
T
.
Convergent evolution of hemoglobin switching in jawed and jawless vertebrates
.
BMC Evol Biol
.
2016
;
16
:
30
.
34.
Liu
X
,
El-Mahdy
MA
,
Boslett
J
, et al
.
Cytoglobin regulates blood pressure and vascular tone through nitric oxide metabolism in the vascular wall
.
Nat Commun
.
2017
;
8
(
1
):
14807
.
35.
Higgs
DR
,
Wood
WG
.
Long-range regulation of alpha globin gene expression during erythropoiesis
.
Curr Opin Hematol
.
2008
;
15
(
3
):
176
-
183
.
36.
Ganis
JJ
,
Hsia
N
,
Trompouki
E
, et al
.
Zebrafish globin switching occurs in two developmental stages and is controlled by the LCR
.
Dev Biol
.
2012
;
366
(
2
):
185
-
194
.
37.
Ribeil
JA
,
Hacein-Bey-Abina
S
,
Payen
E
, et al
.
Gene therapy in a patient with sickle cell disease
.
N Engl J Med
.
2017
;
376
(
9
):
848
-
855
.
38.
Thompson
AA
,
Walters
MC
,
Kwiatkowski
J
, et al
.
Gene therapy in patients with transfusion-dependent β-thalassemia
.
N Engl J Med
.
2018
;
378
(
16
):
1479
-
1493
.
39.
Marktel
S
,
Scaramuzza
S
,
Cicalese
MP
, et al
.
Intrabone hematopoietic stem cell gene therapy for adult and pediatric patients affected by transfusion-dependent ß-thalassemia
.
Nat Med
.
2019
;
25
(
2
):
234
-
241
.
40.
Masuda
T
,
Wang
X
,
Maeda
M
, et al
.
Transcription factors LRF and BCL11A independently repress expression of fetal hemoglobin
.
Science
.
2016
;
351
(
6270
):
285
-
289
.
41.
Liu
N
,
Hargreaves
VV
,
Zhu
Q
, et al
.
Direct Promoter Repression by BCL11A Controls the Fetal to Adult Hemoglobin Switch
.
Cell
.
2018
;
173
(
2
):
430
-
442.e417
.
42.
Martyn
GE
,
Wienert
B
,
Yang
L
, et al
.
Natural regulatory mutations elevate the fetal globin gene via disruption of BCL11A or ZBTB7A binding
.
Nat Genet
.
2018
;
50
(
4
):
498
-
503
.
43.
Ebner
B
,
Panopoulou
G
,
Vinogradov
SN
, et al
.
The globin gene family of the cephalochordate amphioxus: implications for chordate globin evolution
.
BMC Evol Biol
.
2010
;
10
(
1
):
370
.
44.
Wetten
OF
,
Nederbragt
AJ
,
Wilson
RC
,
Jakobsen
KS
,
Edvardsen
RB
,
Andersen
Ø
.
Genomic organization and gene expression of the multiple globins in Atlantic cod: conservation of globin-flanking genes in chordates infers the origin of the vertebrate globin clusters
.
BMC Evol Biol
.
2010
;
10
(
1
):
315
.
45.
Burmester
T
,
Ebner
B
,
Weich
B
,
Hankeln
T
.
Cytoglobin: a novel globin type ubiquitously expressed in vertebrate tissues
.
Mol Biol Evol
.
2002
;
19
(
4
):
416
-
421
.
You do not currently have access to this content.