Key Points

  • Sel1L/Hrd1 ERAD preserves HSC quiescence and self-renewal.

  • ERAD deficiency via Sel1L knockout leads to accumulation of Rheb and activation of mTOR, which leads to HSC proliferation and activation.

Abstract

Hematopoietic stem cells (HSC) self-renew to sustain stem cell pools and differentiate to generate all types of blood cells. HSCs remain in quiescence to sustain their long-term self-renewal potential. It remains unclear whether protein quality control is required for stem cells in quiescence when RNA content, protein synthesis, and metabolic activities are profoundly reduced. Here, we report that protein quality control via endoplasmic reticulum-associated degradation (ERAD) governs the function of quiescent HSCs. The Sel1L/Hrd1 ERAD genes are enriched in the quiescent and inactive HSCs, and conditional knockout of Sel1L in hematopoietic tissues drives HSCs to hyperproliferation, which leads to complete loss of HSC self-renewal and HSC depletion. Mechanistically, ERAD deficiency via Sel1L knockout leads to activation of mammalian target of rapamycin (mTOR) signaling. Furthermore, we identify Ras homolog enriched in brain (Rheb), an activator of mTOR, as a novel protein substrate of Sel1L/Hrd1 ERAD, which accumulates upon Sel1L deletion and HSC activation. Importantly, inhibition of mTOR, or Rheb, rescues HSC defects in Sel1L knockout mice. Protein quality control via ERAD is, therefore, a critical checkpoint that governs HSC quiescence and self-renewal by Rheb-mediated restriction of mTOR activity.

REFERENCES

1.
Orkin
SH
,
Zon
LI
.
Hematopoiesis: an evolving paradigm for stem cell biology
.
Cell
.
2008
;
132
(
4
):
631
-
644
.
2.
Mendelson
A
,
Frenette
PS
.
Hematopoietic stem cell niche maintenance during homeostasis and regeneration
.
Nat Med
.
2014
;
20
(
8
):
833
-
846
.
3.
Morrison
SJ
,
Scadden
DT
.
The bone marrow niche for haematopoietic stem cells
.
Nature
.
2014
;
505
(
7483
):
327
-
334
.
4.
Bjornson
CR
,
Cheung
TH
,
Liu
L
,
Tripathi
PV
,
Steeper
KM
,
Rando
TA
.
Notch signaling is necessary to maintain quiescence in adult muscle stem cells
.
Stem Cells
.
2012
;
30
(
2
):
232
-
242
.
5.
Cheung
TH
,
Quach
NL
,
Charville
GW
, et al
.
Maintenance of muscle stem-cell quiescence by microRNA-489
.
Nature
.
2012
;
482
(
7386
):
524
-
528
.
6.
Farioli-Vecchioli
S
,
Micheli
L
,
Saraulli
D
, et al
.
Btg1 is required to maintain the pool of stem and progenitor cells of the dentate gyrus and subventricular zone
.
Front Neurosci
.
2012
;
6
:
124
.
7.
Jones
KM
,
Sarić
N
,
Russell
JP
,
Andoniadou
CL
,
Scambler
PJ
,
Basson
MA
.
CHD7 maintains neural stem cell quiescence and prevents premature stem cell depletion in the adult hippocampus
.
Stem Cells
.
2015
;
33
(
1
):
196
-
210
.
8.
Li
L
,
Clevers
H
.
Coexistence of quiescent and active adult stem cells in mammals
.
Science
.
2010
;
327
(
5965
):
542
-
545
.
9.
Mourikis
P
,
Sambasivan
R
,
Castel
D
,
Rocheteau
P
,
Bizzarro
V
,
Tajbakhsh
S
.
A critical requirement for notch signaling in maintenance of the quiescent skeletal muscle stem cell state
.
Stem Cells
.
2012
;
30
(
2
):
243
-
252
.
10.
van Velthoven
CTJ
,
Rando
TA
.
Stem cell quiescence: dynamism, restraint, and cellular idling
.
Cell Stem Cell
.
2019
;
24
(
2
):
213
-
225
.
11.
Reya
T
,
Morrison
SJ
,
Clarke
MF
,
Weissman
IL
.
Stem cells, cancer, and cancer stem cells
.
Nature
.
2001
;
414
(
6859
):
105
-
111
.
12.
Rossi
DJ
,
Jamieson
CH
,
Weissman
IL
.
Stems cells and the pathways to aging and cancer
.
Cell
.
2008
;
132
(
4
):
681
-
696
.
13.
Chabannon
C
,
Kuball
J
,
Bondanza
A
, et al
.
Hematopoietic stem cell transplantation in its 60s: A platform for cellular therapies
.
Sci Transl Med
.
2018
;
10
(
436
):
eaap9630
.
14.
Hetz
C
.
The unfolded protein response: controlling cell fate decisions under ER stress and beyond
.
Nat Rev Mol Cell Biol
.
2012
;
13
(
2
):
89
-
102
.
15.
van Galen
P
,
Kreso
A
,
Mbong
N
, et al
.
The unfolded protein response governs integrity of the haematopoietic stem-cell pool during stress
.
Nature
.
2014
;
510
(
7504
):
268
-
272
.
16.
Liu
L
,
Zhao
M
,
Jin
X
, et al
.
Adaptive endoplasmic reticulum stress signalling via IRE1α-XBP1 preserves self-renewal of haematopoietic and pre-leukaemic stem cells
.
Nat Cell Biol
.
2019
;
21
(
3
):
328
-
337
.
17.
.
van Galen
P
,
Mbong
N
,
Kreso
A
, et al
.
Integrated stress response activity marks stem cells in normal hematopoiesis and leukemia
.
Cell Rep
.
2018
;
25
(
5
):
1109
-
1117
.
18.
Foudi
A
,
Hochedlinger
K
,
Van Buren
D
, et al
.
Analysis of histone 2B-GFP retention reveals slowly cycling hematopoietic stem cells
.
Nat Biotechnol
.
2009
;
27
(
1
):
84
-
90
.
19.
Wilson
A
,
Laurenti
E
,
Trumpp
A
.
Balancing dormant and self-renewing hematopoietic stem cells
.
Curr Opin Genet Dev
.
2009
;
19
(
5
):
461
-
468
.
20.
Wilson
A
,
Laurenti
E
,
Oser
G
, et al
.
Hematopoietic stem cells reversibly switch from dormancy to self-renewal during homeostasis and repair
.
Cell
.
2008
;
135
(
6
):
1118
-
1129
.
21.
Buszczak
M
,
Signer
RA
,
Morrison
SJ
.
Cellular differences in protein synthesis regulate tissue homeostasis
.
Cell
.
2014
;
159
(
2
):
242
-
251
.
22.
Llorens-Bobadilla
E
,
Zhao
S
,
Baser
A
,
Saiz-Castro
G
,
Zwadlo
K
,
Martin-Villalba
A
.
Single-cell transcriptomics reveals a population of dormant neural stem cells that become activated upon brain injury
.
Cell Stem Cell
.
2015
;
17
(
3
):
329
-
340
.
23.
Signer
RA
,
Magee
JA
,
Salic
A
,
Morrison
SJ
.
Haematopoietic stem cells require a highly regulated protein synthesis rate
.
Nature
.
2014
;
509
(
7498
):
49
-
54
.
24.
Zismanov
V
,
Chichkov
V
,
Colangelo
V
, et al
.
Phosphorylation of eIF2α Is a translational control mechanism regulating muscle stem cell quiescence and self-renewal
.
Cell Stem Cell
.
2016
;
18
(
1
):
79
-
90
.
25.
Hwang
J
,
Qi
L
.
Quality control in the endoplasmic reticulum: crosstalk between ERAD and UPR pathways
.
Trends Biochem Sci
.
2018
;
43
(
8
):
593
-
605
.
26.
Ruggiano
A
,
Foresti
O
,
Carvalho
P
.
Quality control: ER-associated degradation: protein quality control and beyond
.
J Cell Biol
.
2014
;
204
(
6
):
869
-
879
.
27.
Qi
L
,
Tsai
B
,
Arvan
P
.
New insights into the physiological role of endoplasmic reticulum-associated degradation
.
Trends Cell Biol
.
2017
;
27
(
6
):
430
-
440
.
28.
Kiel
MJ
,
Yilmaz
OH
,
Iwashita
T
,
Yilmaz
OH
,
Terhorst
C
,
Morrison
SJ
.
SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells
.
Cell
.
2005
;
121
(
7
):
1109
-
1121
.
29.
Kiel
MJ
,
Yilmaz
OH
,
Morrison
SJ
.
CD150- cells are transiently reconstituting multipotent progenitors with little or no stem cell activity
.
Blood
.
2008
;
111
(
8
):
4413
-
4414, NaN-4415
.
30.
.
Cabezas-Wallscheid
N
,
Buettner
F
,
Sommerkamp
P
, et al
.
Vitamin A-retinoic acid signaling regulates hematopoietic stem cell dormancy
.
Cell
.
2017
;
169
(
5
):
807
-
823
.
31.
Li
Q
,
Bohin
N
,
Wen
T
, et al
.
Oncogenic Nras has bimodal effects on stem cells that sustainably increase competitiveness
.
Nature
.
2013
;
504
(
7478
):
143
-
147
.
32.
Vannini
N
,
Girotra
M
,
Naveiras
O
, et al
.
Specification of haematopoietic stem cell fate via modulation of mitochondrial activity
.
Nat Commun
.
2016
;
7
(
1
):
13125
.
33.
Sun
S
,
Shi
G
,
Han
X
, et al
.
Sel1L is indispensable for mammalian endoplasmic reticulum-associated degradation, endoplasmic reticulum homeostasis, and survival [published correction appears in Proc Natl Acad Sci USA. 2014;111(16):6115]
.
Proc Natl Acad Sci USA
.
2014
;
111
(
5
):
E582
-
E591
.
34.
Xu
Y
,
Zhao
F
,
Qiu
Q
, et al
.
The ER membrane-anchored ubiquitin ligase Hrd1 is a positive regulator of T-cell immunity
.
Nat Commun
.
2016
;
7
(
1
):
12073
.
35.
Ji
Y
,
Kim
H
,
Yang
L
, et al
.
The Sel1L-Hrd1 endoplasmic reticulum-associated degradation complex manages a key checkpoint in B cell development
.
Cell Rep
.
2016
;
16
(
10
):
2630
-
2640
.
36.
Essers
MA
,
Offner
S
,
Blanco-Bose
WE
, et al
.
IFNalpha activates dormant haematopoietic stem cells in vivo
.
Nature
.
2009
;
458
(
7240
):
904
-
908
.
37.
Nakada
D
,
Saunders
TL
,
Morrison
SJ
.
Lkb1 regulates cell cycle and energy metabolism in haematopoietic stem cells
.
Nature
.
2010
;
468
(
7324
):
653
-
658
.
38.
Martinon
F
,
Chen
X
,
Lee
AH
,
Glimcher
LH
.
TLR activation of the transcription factor XBP1 regulates innate immune responses in macrophages
.
Nat Immunol
.
2010
;
11
(
5
):
411
-
418
.
39.
Saxton
RA
,
Sabatini
DM
.
mTOR signaling in growth, metabolism, and disease [published correction appears in Cell. 2017;169(2):361-371]
.
Cell
.
2017
;
168
(
6
):
960
-
976
.
40.
Bobrovnikova-Marjon
E
,
Pytel
D
,
Riese
MJ
, et al
.
PERK utilizes intrinsic lipid kinase activity to generate phosphatidic acid, mediate Akt activation, and promote adipocyte differentiation
.
Mol Cell Biol
.
2012
;
32
(
12
):
2268
-
2278
.
41.
Kharas
MG
,
Okabe
R
,
Ganis
JJ
, et al
.
Constitutively active AKT depletes hematopoietic stem cells and induces leukemia in mice
.
Blood
.
2010
;
115
(
7
):
1406
-
1415
.
42.
Yilmaz
OH
,
Valdez
R
,
Theisen
BK
, et al
.
Pten dependence distinguishes haematopoietic stem cells from leukaemia-initiating cells
.
Nature
.
2006
;
441
(
7092
):
475
-
482
.
43.
Zhang
J
,
Grindley
JC
,
Yin
T
, et al
.
PTEN maintains haematopoietic stem cells and acts in lineage choice and leukaemia prevention
.
Nature
.
2006
;
441
(
7092
):
518
-
522
.
44.
Chen
C
,
Liu
Y
,
Liu
R
, et al
.
TSC-mTOR maintains quiescence and function of hematopoietic stem cells by repressing mitochondrial biogenesis and reactive oxygen species
.
J Exp Med
.
2008
;
205
(
10
):
2397
-
2408
.
45.
.
Liang
R
,
Arif
T
,
Kalmykova
S
, et al
.
Restraining lysosomal activity preserves hematopoietic stem cell quiescence and potency
.
Cell Stem Cell
.
2020
;
26
(
3
):
359
-
376
.
46.
Angarola
B
,
Ferguson
SM
.
Weak membrane interactions allow Rheb to activate mTORC1 signaling without major lysosome enrichment
.
Mol Biol Cell
.
2019
;
30
(
22
):
2750
-
2760
.
47.
.
Leto
DE
,
Morgens
DW
,
Zhang
L
, et al
.
Genome-wide CRISPR Analysis identifies substrate-specific conjugation modules in ER-associated degradation
.
Mol Cell
.
2019
;
73
(
2
):
377
-
389
.
48.
Bentzinger
CF
,
Romanino
K
,
Cloëtta
D
, et al
.
Skeletal muscle-specific ablation of raptor, but not of rictor, causes metabolic changes and results in muscle dystrophy
.
Cell Metab
.
2008
;
8
(
5
):
411
-
424
.
49.
Cybulski
N
,
Polak
P
,
Auwerx
J
,
Rüegg
MA
,
Hall
MN
.
mTOR complex 2 in adipose tissue negatively controls whole-body growth
.
Proc Natl Acad Sci USA
.
2009
;
106
(
24
):
9902
-
9907
.
50.
Kalaitzidis
D
,
Sykes
SM
,
Wang
Z
, et al
.
mTOR complex 1 plays critical roles in hematopoiesis and Pten-loss-evoked leukemogenesis
.
Cell Stem Cell
.
2012
;
11
(
3
):
429
-
439
.
51.
Mahoney
SJ
,
Narayan
S
,
Molz
L
, et al
.
A small molecule inhibitor of Rheb selectively targets mTORC1 signaling
.
Nat Commun
.
2018
;
9
(
1
):
548
.
52.
Leeman
DS
,
Hebestreit
K
,
Ruetz
T
, et al
.
Lysosome activation clears aggregates and enhances quiescent neural stem cell activation during aging
.
Science
.
2018
;
359
(
6381
):
1277
-
1283
.
53.
Joseph
C
,
Quach
JM
,
Walkley
CR
,
Lane
SW
,
Lo Celso
C
,
Purton
LE
.
Deciphering hematopoietic stem cells in their niches: a critical appraisal of genetic models, lineage tracing, and imaging strategies
.
Cell Stem Cell
.
2013
;
13
(
5
):
520
-
533
.
54.
Sun
S
,
Shi
G
,
Sha
H
, et al
.
IRE1α is an endogenous substrate of endoplasmic-reticulum-associated degradation
.
Nat Cell Biol
.
2015
;
17
(
12
):
1546
-
1555
.
55.
Bhattacharya
A
,
Sun
S
,
Wang
H
, et al
.
Hepatic Sel1L-Hrd1 ER-associated degradation (ERAD) manages FGF21 levels and systemic metabolism via CREBH
.
EMBO J
.
2018
;
37
(
22
):
e99277
.
56.
Francisco
AB
,
Singh
R
,
Li
S
, et al
.
Deficiency of suppressor enhancer Lin12 1 like (SEL1L) in mice leads to systemic endoplasmic reticulum stress and embryonic lethality
.
J Biol Chem
.
2010
;
285
(
18
):
13694
-
13703
.
57.
Sha
H
,
Sun
S
,
Francisco
AB
, et al
.
The ER-associated degradation adaptor protein Sel1L regulates LPL secretion and lipid metabolism
.
Cell Metab
.
2014
;
20
(
3
):
458
-
470
.
58.
Sun
S
,
Lourie
R
,
Cohen
SB
, et al
.
Epithelial Sel1L is required for the maintenance of intestinal homeostasis
.
Mol Biol Cell
.
2016
;
27
(
3
):
483
-
490
.
You do not currently have access to this content.

Sign in via your Institution

Sign In