Key Points

  • siRNA targeting FXIII-B decreases the concentration of plasma FXIII-A for more than 3 weeks after a single injection.

  • Pharmacologic depletion of FXIII-A via FXIII-B can enhance fibrinolysis without excessive bleeding.

Abstract

The activated form of coagulation factor XIII (FXIII-A2B2), FXIII-A*, is a hemostatic enzyme essential for inhibiting fibrinolysis by irreversibly crosslinking fibrin and antifibrinolytic proteins. Despite its importance, there are no modulatory therapeutics. Guided by the observation that humans deficient in FXIII-B have reduced FXIII-A without severe bleeding, we hypothesized that a suitable small interfering RNA (siRNA) targeting hepatic FXIII-B could safely decrease FXIII-A. Here we show that knockdown of FXIII-B with siRNA in mice and rabbits using lipid nanoparticles resulted in a sustained and controlled decrease in FXIII-A. The concentration of FXIII-A in plasma was reduced by 90% for weeks after a single injection and for more than 5 months with repeated injections, whereas the concentration of FXIII-A in platelets was unchanged. Ex vivo, crosslinking of α2-antiplasmin and fibrin was impaired and fibrinolysis was enhanced. In vivo, reperfusion of carotid artery thrombotic occlusion was also enhanced. Re-bleeding events were increased after challenge, but blood loss was not significantly increased. This approach, which mimics congenital FXIII-B deficiency, provides a potential pharmacologic and experimental tool to modulate FXIII-A2B2 activity.

REFERENCES

1.
Griffin
M
,
Casadio
R
,
Bergamini
CM
.
Transglutaminases: nature’s biological glues
.
Biochem J
.
2002
;
368
(
pt 2
):
377
-
396
.
2.
Miloszewski
K
,
Losowsky
MS
.
The half-life of factor XIII in vivo
.
Br J Haematol
.
1970
;
19
(
6
):
685
-
690
.
3.
Saito
M
,
Asakura
H
,
Yoshida
T
, et al
.
A familial factor XIII subunit B deficiency
.
Br J Haematol
.
1990
;
74
(
3
):
290
-
294
.
4.
Le Quellec
S
,
Enjolras
N
,
Perot
E
,
Girard
J
,
Negrier
C
,
Dargaud
Y
.
Fusion of factor IX to factor XIII-B sub-unit improves the pharmacokinetic profile of factor IX
.
Thromb Haemost
.
2018
;
118
(
12
):
2053
-
2063
.
5.
Hurják
B
,
Kovács
Z
,
Döncző
B
, et al
.
N-glycosylation of blood coagulation factor XIII subunit B and its functional consequence
.
J Thromb Haemost
.
2020
;
18
(
6
):
1302
-
1309
.
6.
Muszbek
L
,
Bereczky
Z
,
Bagoly
Z
,
Komáromi
I
,
Katona
É
.
Factor XIII: a coagulation factor with multiple plasmatic and cellular functions
.
Physiol Rev
.
2011
;
91
(
3
):
931
-
972
.
7.
Mitchell
JL
,
Mutch
NJ
.
Let’s cross-link: diverse functions of the promiscuous cellular transglutaminase factor XIII-A
.
J Thromb Haemost
.
2019
;
17
(
1
):
19
-
30
.
8.
Byrnes
JR
,
Wolberg
AS
.
Newly-recognized roles of factor XIII in thrombosis
.
Semin Thromb Hemost
.
2016
;
42
(
4
):
445
-
454
.
9.
Hur
WS
,
Mazinani
N
,
Lu
XJD
, et al
.
Coagulation factor XIIIa cross-links amyloid β into dimers and oligomers and to blood proteins
.
J Biol Chem
.
2019
;
294
(
2
):
390
-
396
.
10.
Bereczky
Z
,
Balogh
E
,
Katona
E
,
Czuriga
I
,
Edes
I
,
Muszbek
L
.
Elevated factor XIII level and the risk of myocardial infarction in women
.
Haematologica
.
2007
;
92
(
2
):
287
-
288
.
11.
Raghu
H
,
Cruz
C
,
Rewerts
CL
, et al
.
Transglutaminase factor XIII promotes arthritis through mechanisms linked to inflammation and bone erosion
.
Blood
.
2015
;
125
(
3
):
427
-
437
.
12.
Palumbo
JS
,
Barney
KA
,
Blevins
EA
, et al
.
Factor XIII transglutaminase supports hematogenous tumor cell metastasis through a mechanism dependent on natural killer cell function
.
J Thromb Haemost
.
2008
;
6
(
5
):
812
-
819
.
13.
Aleman
MM
,
Byrnes
JR
,
Wang
JG
, et al
.
Factor XIII activity mediates red blood cell retention in venous thrombi
.
J Clin Invest
.
2014
;
124
(
8
):
3590
-
3600
.
14.
Kattula
S
,
Byrnes
JR
,
Martin
SM
, et al
.
Factor XIII in plasma, but not in platelets, mediates red blood cell retention in clots and venous thrombus size in mice
.
Blood Adv
.
2018
;
2
(
1
):
25
-
35
.
15.
Cattaneo
M
,
Bertinato
EM
,
Birocchi
S
, et al
.
Pulmonary embolism or pulmonary thrombosis in COVID-19? Is the recommendation to use high-dose heparin for thromboprophylaxis justified? [published online ahead of print 29 April 2020]
.
Thromb Haemost
.
doi:10.1055/s-0040-1712097
.
16.
Testa
S
,
Prandoni
P
,
Paoletti
O
, et al
.
Direct oral anticoagulant plasma levels’ striking increase in severe COVID‐19 respiratory syndrome patients treated with antiviral agents: The Cremona experience
.
J Thromb Haemost
.
2020
;
18
(
6
):
1320
-
1323
.
17.
Wang
J
,
Hajizadeh
N
,
Moore
EE
, et al
.
Tissue plasminogen activator (tPA) treatment for COVID-19 associated acute respiratory distress syndrome (ARDS): A case series
.
J Thromb Haemost
.
2020
;
18
(
7
):
1752
-
1755
.
18.
National Institute of Neurological Disorders and Stroke rt-PA Stroke Study Group
.
Tissue plasminogen activator for acute ischemic stroke
.
N Engl J Med
.
1995
;
333
(
24
):
1581
-
1587
.
19.
Stieler
M
,
Weber
J
,
Hils
M
, et al
.
Structure of active coagulation factor XIII triggered by calcium binding: basis for the design of next-generation anticoagulants
.
Angew Chem Int Ed Engl
.
2013
;
52
(
45
):
11930
-
11934
.
20.
Lorand
L
.
Factor XIII and the clotting of fibrinogen: from basic research to medicine
.
J Thromb Haemost
.
2005
;
3
(
7
):
1337
-
1348
.
21.
Pasternack
R
,
Büchold
C
,
Jähnig
R
, et al
.
Novel inhibitor ZED3197 as potential drug candidate in anticoagulation targeting coagulation FXIIIa (F13a)
.
J Thromb Haemost
.
2020
;
18
(
1
):
191
-
200
.
22.
Wolberg
AS
.
Fibrinogen and factor XIII: newly recognized roles in venous thrombus formation and composition
.
Curr Opin Hematol
.
2018
;
25
(
5
):
358
-
364
.
23.
Schmitz
T
,
Bäuml
CA
,
Imhof
D
.
Inhibitors of blood coagulation factor XIIIa
.
Anal Biochem
.
2020
;
113708
.
24.
Avery
CA
,
Pease
RJ
,
Smith
K
, et al
.
(±) cis-Bisamido epoxides: A novel series of potent FXIII-A inhibitors
.
Eur J Med Chem
.
2015
;
98
:
49
-
53
.
25.
Mitchell
JL
,
Lionikiene
AS
,
Fraser
SR
,
Whyte
CS
,
Booth
NA
,
Mutch
NJ
.
Functional factor XIII-A is exposed on the stimulated platelet surface
.
Blood
.
2014
;
124
(
26
):
3982
-
3990
.
26.
Ichinose
A
;
Japanese Collaborative Research Group on AH13
.
Autoimmune acquired factor XIII deficiency due to anti-factor XIII/13 antibodies: A summary of 93 patients
.
Blood Rev
.
2017
;
31
(
1
):
37
-
45
.
27.
Biswas
A
,
Ivaskevicius
V
,
Seitz
R
,
Thomas
A
,
Oldenburg
J
.
An update of the mutation profile of factor 13 A and B genes
.
Blood Rev
.
2011
;
25
(
5
):
193
-
204
.
28.
Muszbek
L
,
Pénzes
K
,
Katona
É
.
Auto- and alloantibodies against factor XIII: laboratory diagnosis and clinical consequences
.
J Thromb Haemost
.
2018
;
16
(
5
):
822
-
832
.
29.
Menegatti
M
,
Palla
R
,
Boscarino
M
, et al;
PRO-RBDD study group
.
Minimal factor XIII activity level to prevent major spontaneous bleeds
.
J Thromb Haemost
.
2017
;
15
(
9
):
1728
-
1736
.
30.
Ivaskevicius
V
,
Seitz
R
,
Kohler
HP
, et al;
Study Group
.
International registry on factor XIII deficiency: a basis formed mostly on European data
.
Thromb Haemost
.
2007
;
97
(
6
):
914
-
921
.
31.
Fadoo
Z
,
Merchant
Q
,
Rehman
KA
.
New developments in the management of congenital Factor XIII deficiency
.
J Blood Med
.
2013
;
4
:
65
-
73
.
32.
Ivaskevicius
V
,
Biswas
A
,
Loreth
R
, et al
.
Mutations affecting disulphide bonds contribute to a fairly common prevalence of F13B gene defects: results of a genetic study in 14 families with factor XIII B deficiency
.
Haemophilia
.
2010
;
16
(
4
):
675
-
682
.
33.
Ajzner
E
,
Schlammadinger
A
,
Kerényi
A
, et al
.
Severe bleeding complications caused by an autoantibody against the B subunit of plasma factor XIII: a novel form of acquired factor XIII deficiency
.
Blood
.
2009
;
113
(
3
):
723
-
725
.
34.
Jayaraman
M
,
Ansell
SM
,
Mui
BL
, et al
.
Maximizing the potency of siRNA lipid nanoparticles for hepatic gene silencing in vivo
.
Angew Chem Int Ed Engl
.
2012
;
51
(
34
):
8529
-
8533
.
35.
Akinc
A
,
Querbes
W
,
De
S
, et al
.
Targeted delivery of RNAi therapeutics with endogenous and exogenous ligand-based mechanisms
.
Mol Ther
.
2010
;
18
(
7
):
1357
-
1364
.
36.
Coelho
T
,
Adams
D
,
Silva
A
, et al
.
Safety and efficacy of RNAi therapy for transthyretin amyloidosis
.
N Engl J Med
.
2013
;
369
(
9
):
819
-
829
.
37.
Sehgal
A
,
Barros
S
,
Ivanciu
L
, et al
.
An RNAi therapeutic targeting antithrombin to rebalance the coagulation system and promote hemostasis in hemophilia
.
Nat Med
.
2015
;
21
(
5
):
492
-
497
.
38.
Liu
Q
,
Bethune
C
,
Dessouki
E
, et al
.
ISIS-FXIRx, a novel and specific antisense inhibitor of factor XI, caused significant reduction in FXI antigen and activity and increased aPTT without causing bleeding in healthy volunteers [abstract]
.
Blood
.
2011
;
118
(
21
).
Abstract 209
.
39.
Liu
J
,
Qin
J
,
Borodovsky
A
, et al
.
An investigational RNAi therapeutic targeting factor XII (ALN-F12) for the treatment of hereditary angioedema
.
RNA
.
2019
;
25
(
2
):
255
-
263
.
40.
Safdar
H
,
Cheung
KL
,
Salvatori
D
, et al
.
Acute and severe coagulopathy in adult mice following silencing of hepatic antithrombin and protein C production
.
Blood
.
2013
;
121
(
21
):
4413
-
4416
.
41.
Yuasa
M
,
Mignemi
NA
,
Nyman
JS
, et al
.
Fibrinolysis is essential for fracture repair and prevention of heterotopic ossification
.
J Clin Invest
.
2015
;
125
(
8
):
3117
-
3131
.
42.
Adams
D
,
Gonzalez-Duarte
A
,
O’Riordan
WD
, et al
.
Patisiran, an RNAi therapeutic, for hereditary transthyretin amyloidosis
.
N Engl J Med
.
2018
;
379
(
1
):
11
-
21
.
43.
Kulkarni
JA
,
Darjuan
MM
,
Mercer
JE
, et al
.
On the formation and morphology of lipid nanoparticles containing ionizable cationic lipids and siRNA
.
ACS Nano
.
2018
;
12
(
5
):
4787
-
4795
.
44.
Chen
S
,
Tam
YYC
,
Lin
PJC
,
Sung
MMH
,
Tam
YK
,
Cullis
PR
.
Influence of particle size on the in vivo potency of lipid nanoparticle formulations of siRNA
.
J Control Release
.
2016
;
235
:
236
-
244
.
45.
Pryzdial
ELG
,
Meixner
SC
,
Talbot
K
, et al
.
Thrombolysis by chemically modified coagulation factor Xa
.
J Thromb Haemost
.
2016
;
14
(
9
):
1844
-
1854
.
46.
US Food and Drug Administration
.
Estimating the maximum safe starting dose in initial clinical trials for therapeutics in adult healthy volunteers.
https://www.fda.gov/regulatory-information/search-fda-guidance-documents/estimating-maximum-safe-starting-dose-initial-clinical-trials-therapeutics-adult-healthy-volunteers. Accessed 7 February 2019.
47.
Stagaard
R
,
Ley
CD
,
Almholt
K
,
Olsen
LH
,
Knudsen
T
,
Flick
MJ
.
Absence of functional compensation between coagulation factor VIII and plasminogen in double-knockout mice
.
Blood Adv
.
2018
;
2
(
22
):
3126
-
3136
.
48.
Tatsumi
K
,
Ohashi
K
,
Taminishi
S
,
Okano
T
,
Yoshioka
A
,
Shima
M
.
Reference gene selection for real-time RT-PCR in regenerating mouse livers
.
Biochem Biophys Res Commun
.
2008
;
374
(
1
):
106
-
110
.
49.
Fraser
SR
,
Booth
NA
,
Mutch
NJ
.
The antifibrinolytic function of factor XIII is exclusively expressed through α2-antiplasmin cross-linking
.
Blood
.
2011
;
117
(
23
):
6371
-
6374
.
50.
Bagoly
Z
,
Koncz
Z
,
Hársfalvi
J
,
Muszbek
L
.
Factor XIII, clot structure, thrombosis
.
Thromb Res
.
2012
;
129
(
3
):
382
-
387
.
51.
Yorifuji
H
,
Anderson
K
,
Lynch
GW
,
Van de Water
L
,
McDonagh
J
.
B protein of factor XIII: differentiation between free B and complexed B
.
Blood
.
1988
;
72
(
5
):
1645
-
1650
.
52.
Aleman
MM
,
Holle
LA
,
Stember
KG
,
Devette
CI
,
Monroe
DM
,
Wolberg
AS
.
Cystamine preparations exhibit anticoagulant activity
.
PLoS One
.
2015
;
10
(
4
):
e0124448
.
53.
Shebuski
RJ
,
Sitko
GR
,
Claremon
DA
,
Baldwin
JJ
,
Remy
DC
,
Stern
AM
.
Inhibition of factor XIIIa in a canine model of coronary thrombosis: effect on reperfusion and acute reocclusion after recombinant tissue-type plasminogen activator
.
Blood
.
1990
;
75
(
7
):
1455
-
1459
.
54.
Souri
M
,
Koseki-Kuno
S
,
Takeda
N
,
Degen
JL
,
Ichinose
A
.
Administration of factor XIII B subunit increased plasma factor XIII A subunit levels in factor XIII B subunit knock-out mice
.
Int J Hematol
.
2008
;
87
(
1
):
60
-
68
.
55.
Inbal
A
,
Oldenburg
J
,
Carcao
M
,
Rosholm
A
,
Tehranchi
R
,
Nugent
D
.
Recombinant factor XIII: a safe and novel treatment for congenital factor XIII deficiency
.
Blood
.
2012
;
119
(
22
):
5111
-
5117
.
56.
Hevessy
Z
,
Haramura
G
,
Boda
Z
,
Udvardy
M
,
Muszbek
L
.
Promotion of the crosslinking of fibrin and alpha 2-antiplasmin by platelets
.
Thromb Haemost
.
1996
;
75
(
1
):
161
-
167
.
57.
Lauer
P
,
Metzner
HJ
,
Zettlmeissl
G
, et al
.
Targeted inactivation of the mouse locus encoding coagulation factor XIII-A: hemostatic abnormalities in mutant mice and characterization of the coagulation deficit
.
Thromb Haemost
.
2002
;
88
(
6
):
967
-
974
.
58.
Shaya
SA
,
Saldanha
LJ
,
Vaezzadeh
N
,
Zhou
J
,
Ni
R
,
Gross
PL
.
Comparison of the effect of dabigatran and dalteparin on thrombus stability in a murine model of venous thromboembolism
.
J Thromb Haemost
.
2016
;
14
(
1
):
143
-
152
.
You do not currently have access to this content.

Sign in via your Institution

Sign In