Key Points

  • IL-3/GM-CSF stimulation is required for MYC-transduced human hematopoietic cells to transition from normalcy to AML.

  • Early and late granulopoietic progenitor types generate AML rapidly and efficiently after MYC transduction and IL-3/GM-CSF exposure.

Abstract

Hematopoietic clones with leukemogenic mutations arise in healthy people as they age, but progression to acute myeloid leukemia (AML) is rare. Recent evidence suggests that the microenvironment may play an important role in modulating human AML population dynamics. To investigate this concept further, we examined the combined and separate effects of an oncogene (c-MYC) and exposure to interleukin-3 (IL-3), granulocyte-macrophage colony-stimulating factor (GM-CSF), and stem cell factor (SCF) on the experimental genesis of a human AML in xenografted immunodeficient mice. Initial experiments showed that normal human CD34+ blood cells transduced with a lentiviral MYC vector and then transplanted into immunodeficient mice produced a hierarchically organized, rapidly fatal, and serially transplantable blast population, phenotypically and transcriptionally similar to human AML cells, but only in mice producing IL-3, GM-CSF, and SCF transgenically or in regular mice in which the cells were exposed to IL-3 or GM-CSF delivered using a cotransduction strategy. In their absence, the MYC+ human cells produced a normal repertoire of lymphoid and myeloid progeny in transplanted mice for many months, but, on transfer to secondary mice producing the human cytokines, the MYC+ cells rapidly generated AML. Indistinguishable diseases were also obtained efficiently from both primitive (CD34+CD38) and late granulocyte-macrophage progenitor (GMP) cells. These findings underscore the critical role that these cytokines can play in activating a malignant state in normally differentiating human hematopoietic cells in which MYC expression has been deregulated. They also introduce a robust experimental model of human leukemogenesis to further elucidate key mechanisms involved and test strategies to suppress them.

REFERENCES

REFERENCES
1.
Jaiswal
S
,
Fontanillas
P
,
Flannick
J
, et al
.
Age-related clonal hematopoiesis associated with adverse outcomes
.
N Engl J Med
.
2014
;
371
(
26
):
2488
-
2498
.
2.
Genovese
G
,
Kähler
AK
,
Handsaker
RE
, et al
.
Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence
.
N Engl J Med
.
2014
;
371
(
26
):
2477
-
2487
.
3.
Desai
P
,
Mencia-Trinchant
N
,
Savenkov
O
, et al
.
Somatic mutations precede acute myeloid leukemia years before diagnosis
.
Nat Med
.
2018
;
24
(
7
):
1015
-
1023
.
4.
Hogge
DE
,
Ailles
LE
,
Gerhard
B
.
Cytokine responsiveness of primitive progenitors in acute myelogenous leukemia
.
Leukemia
.
1997
;
11
(
12
):
2220
-
2221
.
5.
Ailles
LE
,
Gerhard
B
,
Hogge
DE
.
Detection and characterization of primitive malignant and normal progenitors in patients with acute myelogenous leukemia using long-term coculture with supportive feeder layers and cytokines
.
Blood
.
1997
;
90
(
7
):
2555
-
2564
.
6.
Wunderlich
M
,
Chou
F-S
,
Link
KA
, et al
.
AML xenograft efficiency is significantly improved in NOD/SCID-IL2RG mice constitutively expressing human SCF, GM-CSF and IL-3
.
Leukemia
.
2010
;
24
(
10
):
1785
-
1788
.
7.
Barve
A
,
Casson
L
,
Krem
M
,
Wunderlich
M
,
Mulloy
JC
,
Beverly
LJ
.
Comparative utility of NRG and NRGS mice for the study of normal hematopoiesis, leukemogenesis, and therapeutic response
.
Exp Hematol
.
2018
;
67
:
18
-
31
.
8.
Bonnet
D
,
Bhatia
M
,
Wang
JC
,
Kapp
U
,
Dick
JE
.
Cytokine treatment or accessory cells are required to initiate engraftment of purified primitive human hematopoietic cells transplanted at limiting doses into NOD/SCID mice
.
Bone Marrow Transplant
.
1999
;
23
(
3
):
203
-
209
.
9.
Imren
S
,
Heuser
M
,
Gasparetto
M
, et al
.
Modeling de novo leukemogenesis from human cord blood with MN1 and NUP98HOXD13
.
Blood
.
2014
;
124
(
24
):
3608
-
3612
.
10.
Lin
S
,
Luo
RT
,
Shrestha
M
,
Thirman
MJ
,
Mulloy
JC
.
The full transforming capacity of MLL-Af4 is interlinked with lymphoid lineage commitment
.
Blood
.
2017
;
130
(
7
):
903
-
907
.
11.
Wei
J
,
Wunderlich
M
,
Fox
C
, et al
.
Microenvironment determines lineage fate in a human model of MLL-AF9 leukemia
.
Cancer Cell
.
2008
;
13
(
6
):
483
-
495
.
12.
Dougan
M
,
Dranoff
G
,
Dougan
SKGM-CSF
.
GM-CSF, IL-3, and IL-5 family of cytokines: regulators of inflammation
.
Immunity
.
2019
;
50
(
4
):
796
-
811
.
13.
Hamilton
JA
.
GM-CSF in inflammation
.
J Exp Med
.
2020
;
217
(
1
):
e20190945
.
14.
Larramendy
ML
,
Niini
T
,
Elonen
E
, et al
.
Overexpression of translocation-associated fusion genes of FGFRI, MYC, NPMI, and DEK, but absence of the translocations in acute myeloid leukemia. A microarray analysis
.
Haematologica
.
2002
;
87
(
6
):
569
-
577
.
15.
Poloni
A
,
Serrani
F
,
Berardinelli
E
, et al
.
Telomere length, c-myc and mad-1 expression could represent prognosis markers of myelodysplastic syndrome
.
Leuk Res
.
2013
;
37
(
11
):
1538
-
1544
.
16.
Ohanian
M
,
Rozovski
U
,
Kanagal-Shamanna
R
, et al
.
MYC protein expression is an important prognostic factor in acute myeloid leukemia
.
Leuk Lymphoma
.
2018
;
0
(
0
):
1
-
12
.
17.
Mughal
MK
,
Akhter
A
,
Street
L
,
Pournazari
P
,
Shabani-Rad
MT
,
Mansoor
A
.
Acute myeloid leukaemia: expression of MYC protein and its association with cytogenetic risk profile and overall survival
.
Hematol Oncol
.
2017
;
35
(
3
):
350
-
356
.
18.
Löwenberg
B
,
van Putten
WL
,
Touw
IP
,
Delwel
R
,
Santini
V
.
Autonomous proliferation of leukemic cells in vitro as a determinant of prognosis in adult acute myeloid leukemia
.
N Engl J Med
.
1993
;
328
(
9
):
614
-
619
.
19.
Miyauchi
J
,
Kelleher
CA
,
Yang
YC
, et al
.
The effects of three recombinant growth factors, IL-3, GM-CSF, and G-CSF, on the blast cells of acute myeloblastic leukemia maintained in short-term suspension culture
.
Blood
.
1987
;
70
(
3
):
657
-
663
.
20.
Young
DC
,
Wagner
K
,
Griffin
JD
.
Constitutive expression of the granulocyte-macrophage colony-stimulating factor gene in acute myeloblastic leukemia
.
J Clin Invest
.
1987
;
79
(
1
):
100
-
106
.
21.
Young
DC
,
Griffin
JD
.
Autocrine secretion of GM-CSF in acute myeloblastic leukemia
.
Blood
.
1986
;
68
(
5
):
1178
-
1181
.
22.
Kusakabe
M
,
Sun
AC
,
Tyshchenko
K
, et al
.
Synthetic modeling reveals HOXB genes are critical for the initiation and maintenance of human leukemia
.
Nat Commun
.
2019
;
10
(
1
):
2913
.
23.
Logan
AC
,
Nightingale
SJ
,
Haas
DL
,
Cho
GJ
,
Pepper
KA
,
Kohn
DB
.
Factors influencing the titer and infectivity of lentiviral vectors
.
Hum Gene Ther
.
2004
;
15
(
10
):
976
-
988
.
24.
Imren
S
,
Fabry
ME
,
Westerman
KA
, et al
.
High-level beta-globin expression and preferred intragenic integration after lentiviral transduction of human cord blood stem cells
.
J Clin Invest
.
2004
;
114
(
7
):
953
-
962
.
25.
Wunderlich
M
,
Brooks
RA
,
Panchal
R
,
Rhyasen
GW
,
Danet-Desnoyers
G
,
Mulloy
JC
.
OKT3 prevents xenogeneic GVHD and allows reliable xenograft initiation from unfractionated human hematopoietic tissues
.
Blood
.
2014
;
123
(
24
):
e134
-
e144
.
26.
Miller
PH
,
Rabu
G
,
MacAldaz
M
, et al
.
Analysis of parameters that affect human hematopoietic cell outputs in mutant c-kit-immunodeficient mice
.
Exp Hematol
.
2017
;
48
:
41
-
49
.
27.
Bolouri
H
,
Farrar
JE
,
Triche
T
Jr.
, et al
.
The molecular landscape of pediatric acute myeloid leukemia reveals recurrent structural alterations and age-specific mutational interactions [published correction appears in Nat Med. 2018;24:526]
.
Nat Med
.
2018
;
24
(
1
):
103
-
112
.
28.
Tyner
JW
,
Tognon
CE
,
Bottomly
D
, et al
.
Functional genomic landscape of acute myeloid leukaemia
.
Nature
.
2018
;
562
(
7728
):
526
-
531
.
29.
Beer
PA
,
Knapp
DJHF
,
Miller
PH
, et al
.
Disruption of IKAROS activity in primitive chronic-phase CML cells mimics myeloid disease progression
.
Blood
.
2015
;
125
(
3
):
504
-
515
.
30.
Hogge
DE
,
Lansdorp
PM
,
Reid
D
,
Gerhard
B
,
Eaves
CJ
.
Enhanced detection, maintenance, and differentiation of primitive human hematopoietic cells in cultures containing murine fibroblasts engineered to produce human steel factor, interleukin-3, and granulocyte colony-stimulating factor
.
Blood
.
1996
;
88
(
10
):
3765
-
3773
.
31.
Hanekamp
D
,
Cloos
J
,
Schuurhuis
GJ
.
Leukemic stem cells: identification and clinical application
.
Int J Hematol
.
2017
;
105
(
5
):
549
-
557
.
32.
Quek
L
,
Otto
GW
,
Garnett
C
, et al
.
Genetically distinct leukemic stem cells in human CD34- acute myeloid leukemia are arrested at a hemopoietic precursor-like stage
.
J Exp Med
.
2016
;
213
(
8
):
1513
-
1535
.
33.
Knapp
DJHF
,
Hammond
CA
,
Hui
T
, et al
.
Single-cell analysis identifies a CD33+ subset of human cord blood cells with high regenerative potential
.
Nat Cell Biol
.
2018
;
20
(
6
):
710
-
720
.
34.
Knapp
DJHF
,
Hammond
CA
,
Wang
F
, et al
.
A topological view of human CD34+ cell state trajectories from integrated single-cell output and proteomic data
.
Blood
.
2019
;
133
(
9
):
927
-
939
.
35.
Notta
F
,
Zandi
S
,
Takayama
N
, et al
.
Distinct routes of lineage development reshape the human blood hierarchy across ontogeny
.
Science
.
2016
;
351
(
6269
):
aab2116
.
36.
Dong
F
,
Bai
H
,
Wang
X
, et al
.
Mouse acute leukemia develops independent of self-renewal and differentiation potentials in hematopoietic stem and progenitor cells
.
Blood Adv
.
2019
;
3
(
3
):
419
-
431
.
37.
Ye
M
,
Zhang
H
,
Yang
H
, et al
.
Hematopoietic differentiation is required for initiation of acute myeloid leukemia
.
Cell Stem Cell
.
2015
;
17
(
5
):
611
-
623
.
38.
Cozzio
A
,
Passegué
E
,
Ayton
PM
,
Karsunky
H
,
Cleary
ML
,
Weissman
IL
.
Similar MLL-associated leukemias arising from self-renewing stem cells and short-lived myeloid progenitors
.
Genes Dev
.
2003
;
17
(
24
):
3029
-
3035
.
39.
Stavropoulou
V
,
Kaspar
S
,
Brault
L
, et al
.
MLL-AF9 expression in hematopoietic stem cells drives a highly invasive AML expressing EMT-related genes linked to poor outcome
.
Cancer Cell
.
2016
;
30
(
1
):
43
-
58
.
40.
Ugale
A
,
Norddahl
GL
,
Wahlestedt
M
, et al
.
Hematopoietic stem cells are intrinsically protected against MLL-ENL-mediated transformation
.
Cell Rep
.
2014
;
9
(
4
):
1246
-
1255
.
41.
Krivtsov
AV
,
Twomey
D
,
Feng
Z
, et al
.
Transformation from committed progenitor to leukaemia stem cell initiated by MLL-AF9
.
Nature
.
2006
;
442
(
7104
):
818
-
822
.
42.
Huntly
BJP
,
Shigematsu
H
,
Deguchi
K
, et al
.
MOZ-TIF2, but not BCR-ABL, confers properties of leukemic stem cells to committed murine hematopoietic progenitors
.
Cancer Cell
.
2004
;
6
(
6
):
587
-
596
.
43.
Goardon
N
,
Marchi
E
,
Atzberger
A
, et al
.
Coexistence of LMPP-like and GMP-like leukemia stem cells in acute myeloid leukemia
.
Cancer Cell
.
2011
;
19
(
1
):
138
-
152
.
44.
Taussig
DC
,
Miraki-Moud
F
,
Anjos-Afonso
F
, et al
.
Anti-CD38 antibody-mediated clearance of human repopulating cells masks the heterogeneity of leukemia-initiating cells
.
Blood
.
2008
;
112
(
3
):
568
-
575
.
45.
Jamieson
CHM
,
Ailles
LE
,
Dylla
SJ
, et al
.
Granulocyte-macrophage progenitors as candidate leukemic stem cells in blast-crisis CML
.
N Engl J Med
.
2004
;
351
(
7
):
657
-
667
.
46.
Heidemann
S
,
Bursic
B
,
Zandi
S
, et al
.
Cellular and molecular architecture of hematopoietic stem cells and progenitors in genetic models of bone marrow failure
.
JCI Insight
.
2020
;
5
(
4
):
131018
.
47.
Young
DC
,
Demetri
GD
,
Ernst
TJ
,
Cannistra
SA
,
Griffin
JD
.
In vitro expression of colony-stimulating factor genes by human acute myeloblastic leukemia cells
.
Exp Hematol
.
1988
;
16
(
5
):
378
-
382
.
48.
Jiang
X
,
Lopez
A
,
Holyoake
T
,
Eaves
A
,
Eaves
C
.
Autocrine production and action of IL-3 and granulocyte colony-stimulating factor in chronic myeloid leukemia
.
Proc Natl Acad Sci USA
.
1999
;
96
(
22
):
12804
-
12809
.
49.
Libby
P
,
Ebert
BL
.
CHIP (clonal hematopoiesis of indeterminate potential): potent and newly recognized contributor to cardiovascular risk
.
Circulation
.
2018
;
138
(
7
):
666
-
668
.
You do not currently have access to this content.

Sign in via your Institution

Sign In