Key Points

  • BM regeneration requires donor hematopoietic progenitor mitochondria transfer to the host mesenchymal microenvironment.

  • Mitochondrial transfer from donor HSPC to host BM MSC is regulated positively by hematopoietic Cx43 and negatively by hematopoietic AMPK.

Abstract

The fate of hematopoietic stem and progenitor cells (HSPC) is tightly regulated by their bone marrow (BM) microenvironment (ME). BM transplantation (BMT) frequently requires irradiation preconditioning to ablate endogenous hematopoietic cells. Whether the stromal ME is damaged and how it recovers after irradiation is unknown. We report that BM mesenchymal stromal cells (MSC) undergo massive damage to their mitochondrial function after irradiation. Donor healthy HSPC transfer functional mitochondria to the stromal ME, thus improving mitochondria activity in recipient MSC. Mitochondrial transfer to MSC is cell-contact dependent and mediated by HSPC connexin-43 (Cx43). Hematopoietic Cx43-deficient chimeric mice show reduced mitochondria transfer, which was rescued upon re-expression of Cx43 in HSPC or culture with isolated mitochondria from Cx43 deficient HSPCs. Increased intracellular adenosine triphosphate levels activate the purinergic receptor P2RX7 and lead to reduced activity of adenosine 5′-monophosphate–activated protein kinase (AMPK) in HSPC, dramatically increasing mitochondria transfer to BM MSC. Host stromal ME recovery and donor HSPC engraftment were augmented after mitochondria transfer. Deficiency of Cx43 delayed mesenchymal and osteogenic regeneration while in vivo AMPK inhibition increased stromal recovery. As a consequence, the hematopoietic compartment reconstitution was improved because of the recovery of the supportive stromal ME. Our findings demonstrate that healthy donor HSPC not only reconstitute the hematopoietic system after transplantation, but also support and induce the metabolic recovery of their irradiated, damaged ME via mitochondria transfer. Understanding the mechanisms regulating stromal recovery after myeloablative stress are of high clinical interest to optimize BMT procedures and underscore the importance of accessory, non-HSC to accelerate hematopoietic engraftment.

REFERENCES

1.
Wei
Q
,
Frenette
PS
.
Niches for hematopoietic stem cells and their progeny
.
Immunity
.
2018
;
48
(
4
):
632
-
648
.
2.
Kfoury
Y
,
Scadden
DT
.
Mesenchymal cell contributions to the stem cell niche
.
Cell Stem Cell
.
2015
;
16
(
3
):
239
-
253
.
3.
Morrison
SJ
,
Scadden
DT
.
The bone marrow niche for haematopoietic stem cells
.
Nature
.
2014
;
505
(
7483
):
327
-
334
.
4.
Abbuehl
JP
,
Tatarova
Z
,
Held
W
,
Huelsken
J
.
Long-term engraftment of primary bone marrow stromal cells repairs niche damage and improves hematopoietic stem cell transplantation
.
Cell Stem Cell
.
2017
;
21
(
2
):
241
-
255
.
5.
Zhao
M
,
Tao
F
,
Venkatraman
A
, et al
.
N-cadherin-expressing bone and marrow stromal progenitor cells maintain reserve hematopoietic stem cells
.
Cell Rep
.
2019
;
26
(
3
):
652
-
669
.
6.
Crippa
S
,
Santi
L
,
Bosotti
R
,
Porro
G
,
Bernardo
ME
.
Bone marrow-derived mesenchymal stromal cells: a novel target to optimize hematopoietic stem cell transplantation protocols in hematological malignancies and rare genetic disorders
.
J Clin Med
.
2019
;
9
(
1
):
2
.
7.
von Bahr
L
,
Batsis
I
,
Moll
G
, et al
.
Analysis of tissues following mesenchymal stromal cell therapy in humans indicates limited long-term engraftment and no ectopic tissue formation
.
Stem Cells
.
2012
;
30
(
7
):
1575
-
1578
.
8.
de Lima
M
,
McNiece
I
,
Robinson
SN
, et al
.
Cord-blood engraftment with ex vivo mesenchymal-cell coculture
.
N Engl J Med
.
2012
;
367
(
24
):
2305
-
2315
.
9.
Almeida-Porada
G
,
Porada
CD
,
Tran
N
,
Zanjani
ED
.
Cotransplantation of human stromal cell progenitors into preimmune fetal sheep results in early appearance of human donor cells in circulation and boosts cell levels in bone marrow at later time points after transplantation
.
Blood
.
2000
;
95
(
11
):
3620
-
3627
.
10.
Hoggatt
J
,
Kfoury
Y
,
Scadden
DT
.
Hematopoietic stem cell niche in health and disease
.
Annu Rev Pathol
.
2016
;
11
(
1
):
555
-
581
.
11.
Verstegen
MM
,
van Hennik
PB
,
Terpstra
W
, et al
.
Transplantation of human umbilical cord blood cells in macrophage-depleted SCID mice: evidence for accessory cell involvement in expansion of immature CD34+CD38− cells
.
Blood
.
1998
;
91
(
6
):
1966
-
1976
.
12.
Goldberg
LR
,
Dooner
MS
,
Johnson
KW
, et al
.
The murine long-term multi-lineage renewal marrow stem cell is a cycling cell
.
Leukemia
.
2014
;
28
(
4
):
813
-
822
.
13.
Ito
K
,
Hirao
A
,
Arai
F
, et al
.
Reactive oxygen species act through p38 MAPK to limit the lifespan of hematopoietic stem cells [published correction appears in Nat Med. 2010;16(1):129]
.
Nat Med
.
2006
;
12
(
4
):
446
-
451
.
14.
Ludin
A
,
Gur-Cohen
S
,
Golan
K
, et al
.
Reactive oxygen species regulate hematopoietic stem cell self-renewal, migration and development, as well as their bone marrow microenvironment
.
Antioxid Redox Signal
.
2014
;
21
(
11
):
1605
-
1619
.
15.
Itkin
T
,
Gur-Cohen
S
,
Spencer
JA
, et al
.
Distinct bone marrow blood vessels differentially regulate haematopoiesis
.
Nature
.
2016
;
532
(
7599
):
323
-
328
.
16.
Golan
K
,
Kumari
A
,
Kollet
O
, et al
.
Daily onset of light and darkness differentially controls hematopoietic stem cell differentiation and maintenance
.
Cell Stem Cell
.
2018
;
23
(
4
):
572
-
585
.
17.
Taniguchi Ishikawa
E
,
Gonzalez-Nieto
D
,
Ghiaur
G
, et al
.
Connexin-43 prevents hematopoietic stem cell senescence through transfer of reactive oxygen species to bone marrow stromal cells
.
Proc Natl Acad Sci USA
.
2012
;
109
(
23
):
9071
-
9076
.
18.
Cancelas
JA
,
Koevoet
WL
,
de Koning
AE
,
Mayen
AE
,
Rombouts
EJ
,
Ploemacher
RE
.
Connexin-43 gap junctions are involved in multiconnexin-expressing stromal support of hemopoietic progenitors and stem cells
.
Blood
.
2000
;
96
(
2
):
498
-
505
.
19.
González-Nieto
D
,
Chang
KH
,
Fasciani
I
, et al
.
Connexins: intercellular signal transmitters in lymphohematopoietic tissues
.
Int Rev Cell Mol Biol
.
2015
;
318
:
27
-
62
.
20.
Gonzalez-Nieto
D
,
Li
L
,
Kohler
A
, et al
.
Connexin-43 in the osteogenic BM niche regulates its cellular composition and the bidirectional traffic of hematopoietic stem cells and progenitors
.
Blood
.
2012
;
119
(
22
):
5144
-
5154
.
21.
Presley
CA
,
Lee
AW
,
Kastl
B
, et al
.
Bone marrow connexin-43 expression is critical for hematopoietic regeneration after chemotherapy
.
Cell Commun Adhes
.
2005
;
12
(
5-6
):
307
-
317
.
22.
Schajnovitz
A
,
Itkin
T
,
D’Uva
G
, et al
.
CXCL12 secretion by bone marrow stromal cells is dependent on cell contact and mediated by connexin-43 and connexin-45 gap junctions
.
Nat Immunol
.
2011
;
12
(
5
):
391
-
398
.
23.
Islam
MN
,
Das
SR
,
Emin
MT
, et al
.
Mitochondrial transfer from bone-marrow-derived stromal cells to pulmonary alveoli protects against acute lung injury
.
Nat Med
.
2012
;
18
(
5
):
759
-
765
.
24.
Griessinger
E
,
Moschoi
R
,
Biondani
G
,
Peyron
JF
.
Mitochondrial transfer in the leukemia microenvironment
.
Trends Cancer
.
2017
;
3
(
12
):
828
-
839
.
25.
Jackson
MV
,
Morrison
TJ
,
Doherty
DF
, et al
.
Mitochondrial transfer via tunneling nanotubes is an important mechanism by which mesenchymal stem cells enhance macrophage phagocytosis in the in vitro and in vivo models of ARDS
.
Stem Cells
.
2016
;
34
(
8
):
2210
-
2223
.
26.
Marlein
CR
,
Zaitseva
L
,
Piddock
RE
, et al
.
NADPH oxidase-2 derived superoxide drives mitochondrial transfer from bone marrow stromal cells to leukemic blasts
.
Blood
.
2017
;
130
(
14
):
1649
-
1660
.
27.
Ahmad
T
,
Mukherjee
S
,
Pattnaik
B
, et al
.
Miro1 regulates intercellular mitochondrial transport & enhances mesenchymal stem cell rescue efficacy
.
EMBO J
.
2014
;
33
(
9
):
994
-
1010
.
28.
Marlein
CR
,
Zaitseva
L
,
Piddock
RE
, et al
.
PGC-1α driven mitochondrial biogenesis in stromal cells underpins mitochondrial trafficking to leukemic blasts
.
Leukemia
.
2018
;
32
(
9
):
2073
-
2077
.
29.
Hough
KP
,
Trevor
JL
,
Strenkowski
JG
, et al
.
Exosomal transfer of mitochondria from airway myeloid-derived regulatory cells to T cells
.
Redox Biol
.
2018
;
18
:
54
-
64
.
30.
Takubo
K
,
Nagamatsu
G
,
Kobayashi
CI
, et al
.
Regulation of glycolysis by Pdk functions as a metabolic checkpoint for cell cycle quiescence in hematopoietic stem cells
.
Cell Stem Cell
.
2013
;
12
(
1
):
49
-
61
.
31.
Tencerova
M
,
Rendina-Ruedy
E
,
Neess
D
, et al
.
Metabolic programming determines the lineage-differentiation fate of murine bone marrow stromal progenitor cells
.
Bone Res
.
2019
;
7
(
1
):
35
.
32.
Pham
AH
,
McCaffery
JM
,
Chan
DC
.
Mouse lines with photo-activatable mitochondria to study mitochondrial dynamics
.
Genesis
.
2012
;
50
(
11
):
833
-
843
.
33.
de Almeida
MJ
,
Luchsinger
LL
,
Corrigan
DJ
,
Williams
LJ
,
Snoeck
HW
.
Dye-independent methods reveal elevated mitochondrial mass in hematopoietic stem cells
.
Cell Stem Cell
.
2017
;
21
(
6
):
725
-
729
.
34.
Murray
LMA
,
Krasnodembskaya
AD
.
Concise review: intercellular communication via organelle transfer in the biology and therapeutic applications of stem cells
.
Stem Cells
.
2019
;
37
(
1
):
14
-
25
.
35.
Wang
SB
,
Hendry
JH
,
Testa
NG
.
Sensitivity and recovery of stromal progenitor cells (CFU-F) in mouse bone marrow given gamma-irradiation at 0.65 Gy per day
.
Biomed Pharmacother
.
1987
;
41
(
1
):
48
-
50
.
36.
Tzameli
I
.
The evolving role of mitochondria in metabolism
.
Trends Endocrinol Metab
.
2012
;
23
(
9
):
417
-
419
.
37.
Valeri
CR
,
Zaroulis
CG
.
Rejuvenation and freezing of outdated stored human red cells
.
N Engl J Med
.
1972
;
287
(
26
):
1307
-
1313
.
38.
Garcia
D
,
Shaw
RJ
.
AMPK: mechanisms of cellular energy sensing and restoration of metabolic balance
.
Mol Cell
.
2017
;
66
(
6
):
789
-
800
.
39.
Omatsu
Y
,
Seike
M
,
Sugiyama
T
,
Kume
T
,
Nagasawa
T
.
Foxc1 is a critical regulator of haematopoietic stem/progenitor cell niche formation
.
Nature
.
2014
;
508
(
7497
):
536
-
540
.
40.
Ding
L
,
Saunders
TL
,
Enikolopov
G
,
Morrison
SJ
.
Endothelial and perivascular cells maintain haematopoietic stem cells
.
Nature
.
2012
;
481
(
7382
):
457
-
462
.
41.
Sugiyama
T
,
Kohara
H
,
Noda
M
,
Nagasawa
T
.
Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches
.
Immunity
.
2006
;
25
(
6
):
977
-
988
.
42.
Morikawa
S
,
Mabuchi
Y
,
Kubota
Y
, et al
.
Prospective identification, isolation, and systemic transplantation of multipotent mesenchymal stem cells in murine bone marrow
.
J Exp Med
.
2009
;
206
(
11
):
2483
-
2496
.
43.
Spees
JL
,
Olson
SD
,
Whitney
MJ
,
Prockop
DJ
.
Mitochondrial transfer between cells can rescue aerobic respiration
.
Proc Natl Acad Sci USA
.
2006
;
103
(
5
):
1283
-
1288
.
44.
Li
X
,
Zhang
Y
,
Yeung
SC
, et al
.
Mitochondrial transfer of induced pluripotent stem cell-derived mesenchymal stem cells to airway epithelial cells attenuates cigarette smoke-induced damage
.
Am J Respir Cell Mol Biol
.
2014
;
51
(
3
):
455
-
465
.
45.
Moschoi
R
,
Imbert
V
,
Nebout
M
, et al
.
Protective mitochondrial transfer from bone marrow stromal cells to acute myeloid leukemic cells during chemotherapy
.
Blood
.
2016
;
128
(
2
):
253
-
264
.
46.
Yao
Y
,
Fan
XL
,
Jiang
D
, et al
.
Connexin 43-mediated mitochondrial transfer of iPSC-MSCs alleviates asthma inflammation
.
Stem Cell Reports
.
2018
;
11
(
5
):
1120
-
1135
.
47.
Mistry
JJ
,
Marlein
CR
,
Moore
JA
, et al
.
ROS-mediated PI3K activation drives mitochondrial transfer from stromal cells to hematopoietic stem cells in response to infection
.
Proc Natl Acad Sci USA
.
2019
;
116
(
49
):
24610
-
24619
.
48.
Borges da Silva
H
,
Beura
LK
,
Wang
H
, et al
.
The purinergic receptor P2RX7 directs metabolic fitness of long-lived memory CD8+ T cells
.
Nature
.
2018
;
559
(
7713
):
264
-
268
.
49.
Court
AC
,
Le-Gatt
A
,
Luz-Crawford
P
, et al
.
Mitochondrial transfer from MSCs to T cells induces Treg differentiation and restricts inflammatory response
.
EMBO Rep
.
2020
;
21
(
2
):
e48052
.
50.
Fujisaki
J
,
Wu
J
,
Carlson
AL
, et al
.
In vivo imaging of Treg cells providing immune privilege to the haematopoietic stem-cell niche
.
Nature
.
2011
;
474
(
7350
):
216
-
219
.
51.
Pittenger
MF
,
Discher
DE
,
Péault
BM
,
Phinney
DG
,
Hare
JM
,
Caplan
AI
.
Mesenchymal stem cell perspective: cell biology to clinical progress
.
NPJ Regen Med
.
2019
;
4
(
1
):
22
.
You do not currently have access to this content.

Sign in via your Institution

Sign In