Key Points

  • Disruption of the β-catenin-TCF/LEF interaction compromises steady-state and emergency granulopoiesis.

  • TCF/LEF factors regulate G-CSF receptor expression by directly interacting with CSF3R promoter and enhancer regions.

Abstract

The canonical Wnt signaling pathway is mediated by interaction of β-catenin with the T-cell factor/lymphoid enhancer-binding factor (TCF/LEF) transcription factors and subsequent transcription activation of Wnt-target genes. In the hematopoietic system, the function of the pathway has been mainly investigated by rather unspecific genetic manipulations of β-catenin that yielded contradictory results. Here, we used a mouse expressing a truncated dominant negative form of the human TCF4 transcription factor (dnTCF4) that specifically abrogates β-catenin-TCF/LEF interaction. Disruption of the β-catenin-TCF/LEF interaction resulted in the accumulation of immature cells and reduced granulocytic differentiation. Mechanistically, dnTCF4 progenitors exhibited downregulation of the Csf3r gene, reduced granulocyte colony-stimulating factor (G-CSF) receptor levels, attenuation of downstream Stat3 phosphorylation after G-CSF treatment, and impaired G-CSF-mediated differentiation. Chromatin immunoprecipitation assays confirmed direct binding of TCF/LEF factors to the promoter and putative enhancer regions of CSF3R. Inhibition of β-catenin signaling compromised activation of the emergency granulopoiesis program, which requires maintenance and expansion of myeloid progenitors. Consequently, dnTCF4 mice were more susceptible to Candida albicans infection and more sensitive to 5-fluorouracil-induced granulocytic regeneration. Importantly, genetic and chemical inhibition of β-catenin-TCF/LEF signaling in human CD34+ cells reduced granulocytic differentiation, whereas its activation enhanced myelopoiesis. Altogether, our data indicate that the β-catenin-TCF/LEF complex directly regulates G-CSF receptor levels, and consequently controls proper differentiation of myeloid progenitors into granulocytes in steady-state and emergency granulopoiesis. Our results uncover a role for the β-catenin signaling pathway in fine tuning the granulocytic production, opening venues for clinical intervention that require enhanced or reduced production of neutrophils.

REFERENCES

1.
Boettcher
S
,
Manz
MG
.
Regulation of inflammation- and infection-driven hematopoiesis
.
Trends Immunol
.
2017
;
38
(
5
):
345
-
357
.
2.
Daniels
DL
,
Weis
WI
.
Beta-catenin directly displaces Groucho/TLE repressors from Tcf/Lef in Wnt-mediated transcription activation
.
Nat Struct Mol Biol
.
2005
;
12
(
4
):
364
-
371
.
3.
Roose
J
,
Molenaar
M
,
Peterson
J
, et al
.
The Xenopus Wnt effector XTcf-3 interacts with Groucho-related transcriptional repressors
.
Nature
.
1998
;
395
(
6702
):
608
-
612
.
4.
Sekiya
T
,
Zaret
KS
.
Repression by Groucho/TLE/Grg proteins: genomic site recruitment generates compacted chromatin in vitro and impairs activator binding in vivo
.
Mol Cell
.
2007
;
28
(
2
):
291
-
303
.
5.
Laurenti
E
,
Doulatov
S
,
Zandi
S
, et al
.
The transcriptional architecture of early human hematopoiesis identifies multilevel control of lymphoid commitment
.
Nat Immunol
.
2013
;
14
(
7
):
756
-
763
.
6.
Wu
JQ
,
Seay
M
,
Schulz
VP
, et al
.
Tcf7 is an important regulator of the switch of self-renewal and differentiation in a multipotential hematopoietic cell line
.
PLoS Genet
.
2012
;
8
(
3
):
e1002565
.
7.
Yu
S
,
Li
F
,
Xing
S
,
Zhao
T
,
Peng
W
,
Xue
HH
.
Hematopoietic and leukemic stem cells have distinct dependence on Tcf1 and Lef1 transcription factors
.
J Biol Chem
.
2016
;
291
(
21
):
11148
-
11160
.
8.
Gomes
I
,
Sharma
TT
,
Edassery
S
,
Fulton
N
,
Mar
BG
,
Westbrook
CA
.
Novel transcription factors in human CD34 antigen-positive hematopoietic cells
.
Blood
.
2002
;
100
(
1
):
107
-
119
.
9.
Staal
FJ
,
Luis
TC
.
Wnt signaling in hematopoiesis: crucial factors for self-renewal, proliferation, and cell fate decisions
.
J Cell Biochem
.
2010
;
109
(
5
):
844
-
849
.
10.
Fleming
HE
,
Janzen
V
,
Lo Celso
C
, et al
.
Wnt signaling in the niche enforces hematopoietic stem cell quiescence and is necessary to preserve self-renewal in vivo
.
Cell Stem Cell
.
2008
;
2
(
3
):
274
-
283
.
11.
Luis
TC
,
Weerkamp
F
,
Naber
BA
, et al
.
Wnt3a deficiency irreversibly impairs hematopoietic stem cell self-renewal and leads to defects in progenitor cell differentiation
.
Blood
.
2009
;
113
(
3
):
546
-
554
.
12.
Zhao
C
,
Blum
J
,
Chen
A
, et al
.
Loss of beta-catenin impairs the renewal of normal and CML stem cells in vivo
.
Cancer Cell
.
2007
;
12
(
6
):
528
-
541
.
13.
Austin
TW
,
Solar
GP
,
Ziegler
FC
,
Liem
L
,
Matthews
W
.
A role for the Wnt gene family in hematopoiesis: expansion of multilineage progenitor cells
.
Blood
.
1997
;
89
(
10
):
3624
-
3635
.
14.
Baba
Y
,
Garrett
KP
,
Kincade
PW
.
Constitutively active beta-catenin confers multilineage differentiation potential on lymphoid and myeloid progenitors
.
Immunity
.
2005
;
23
(
6
):
599
-
609
.
15.
Reya
T
,
Duncan
AW
,
Ailles
L
, et al
.
A role for Wnt signalling in self-renewal of haematopoietic stem cells
.
Nature
.
2003
;
423
(
6938
):
409
-
414
.
16.
Van Den Berg
DJ
,
Sharma
AK
,
Bruno
E
,
Hoffman
R
.
Role of members of the Wnt gene family in human hematopoiesis
.
Blood
.
1998
;
92
(
9
):
3189
-
3202
.
17.
Willert
K
,
Brown
JD
,
Danenberg
E
, et al
.
Wnt proteins are lipid-modified and can act as stem cell growth factors
.
Nature
.
2003
;
423
(
6938
):
448
-
452
.
18.
Kirstetter
P
,
Anderson
K
,
Porse
BT
,
Jacobsen
SE
,
Nerlov
C
.
Activation of the canonical Wnt pathway leads to loss of hematopoietic stem cell repopulation and multilineage differentiation block
.
Nat Immunol
.
2006
;
7
(
10
):
1048
-
1056
.
19.
Scheller
M
,
Huelsken
J
,
Rosenbauer
F
, et al
.
Hematopoietic stem cell and multilineage defects generated by constitutive beta-catenin activation
.
Nat Immunol
.
2006
;
7
(
10
):
1037
-
1047
.
20.
Cobas
M
,
Wilson
A
,
Ernst
B
, et al
.
Beta-catenin is dispensable for hematopoiesis and lymphopoiesis
.
J Exp Med
.
2004
;
199
(
2
):
221
-
229
.
21.
Jeannet
G
,
Scheller
M
,
Scarpellino
L
, et al
.
Long-term, multilineage hematopoiesis occurs in the combined absence of beta-catenin and gamma-catenin
.
Blood
.
2008
;
111
(
1
):
142
-
149
.
22.
Koch
U
,
Wilson
A
,
Cobas
M
,
Kemler
R
,
Macdonald
HR
,
Radtke
F
.
Simultaneous loss of beta- and gamma-catenin does not perturb hematopoiesis or lymphopoiesis
.
Blood
.
2008
;
111
(
1
):
160
-
164
.
23.
Luis
TC
,
Naber
BA
,
Roozen
PP
, et al
.
Canonical wnt signaling regulates hematopoiesis in a dosage-dependent fashion
.
Cell Stem Cell
.
2011
;
9
(
4
):
345
-
356
.
24.
Janeckova
L
,
Fafilek
B
,
Krausova
M
, et al
.
Wnt signaling inhibition deprives small intestinal stem cells of clonogenic capacity
.
Genesis
.
2016
;
54
(
3
):
101
-
114
.
25.
Shimshek
DR
,
Kim
J
,
Hübner
MR
, et al
.
Codon-improved Cre recombinase (iCre) expression in the mouse
.
Genesis
.
2002
;
32
(
1
):
19
-
26
.
26.
Boettcher
S
,
Gerosa
RC
,
Radpour
R
, et al
.
Endothelial cells translate pathogen signals into G-CSF-driven emergency granulopoiesis
.
Blood
.
2014
;
124
(
9
):
1393
-
1403
.
27.
Kardosova
M
,
Zjablovskaja
P
,
Danek
P
, et al
.
C/EBPγ is dispensable for steady-state and emergency granulopoiesis
.
Haematologica
.
2018
;
103
(
8
):
e331
-
e335
.
28.
Satake
S
,
Hirai
H
,
Hayashi
Y
, et al
.
C/EBPβ is involved in the amplification of early granulocyte precursors during candidemia-induced “emergency” granulopoiesis
.
J Immunol
.
2012
;
189
(
9
):
4546
-
4555
.
29.
Kiel
MJ
,
Yilmaz
OH
,
Iwashita
T
,
Yilmaz
OH
,
Terhorst
C
,
Morrison
SJ
.
SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells
.
Cell
.
2005
;
121
(
7
):
1109
-
1121
.
30.
Chen
EY
,
Tan
CM
,
Kou
Y
, et al
.
Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool
.
BMC Bioinformatics
.
2013
;
14
(
1
):
128
.
31.
Zhang
DE
,
Zhang
P
,
Wang
ND
,
Hetherington
CJ
,
Darlington
GJ
,
Tenen
DG
.
Absence of granulocyte colony-stimulating factor signaling and neutrophil development in CCAAT enhancer binding protein alpha-deficient mice
.
Proc Natl Acad Sci USA
.
1997
;
94
(
2
):
569
-
574
.
32.
Sakurai
M
,
Kunimoto
H
,
Watanabe
N
, et al
.
Impaired hematopoietic differentiation of RUNX1-mutated induced pluripotent stem cells derived from FPD/AML patients
.
Leukemia
.
2014
;
28
(
12
):
2344
-
2354
.
33.
Gerritsen
M
,
Yi
G
,
Tijchon
E
, et al
.
RUNX1 mutations enhance self-renewal and block granulocytic differentiation in human in vitro models and primary AMLs
.
Blood Adv
.
2019
;
3
(
3
):
320
-
332
.
34.
Kueh
HY
,
Champhekar
A
,
Nutt
SL
,
Elowitz
MB
,
Rothenberg
EV
.
Positive feedback between PU.1 and the cell cycle controls myeloid differentiation [published correction appears in Science. 2013;342(6156):311]
.
Science
.
2013
;
341
(
6146
):
670
-
673
.
35.
DeKoter
RP
,
Walsh
JC
,
Singh
H
.
PU.1 regulates both cytokine-dependent proliferation and differentiation of granulocyte/macrophage progenitors
.
EMBO J
.
1998
;
17
(
15
):
4456
-
4468
.
36.
Manz
MG
,
Boettcher
S
.
Emergency granulopoiesis
.
Nat Rev Immunol
.
2014
;
14
(
5
):
302
-
314
.
37.
Hérault
A
,
Binnewies
M
,
Leong
S
, et al
.
Myeloid progenitor cluster formation drives emergency and leukaemic myelopoiesis
.
Nature
.
2017
;
544
(
7648
):
53
-
58
.
38.
Feder
K
,
Edmaier-Schröger
K
,
Rawat
VPS
, et al
.
Differences in expression and function of LEF1 isoforms in normal versus leukemic hematopoiesis
.
Leukemia
.
2020
;
34
(
4
):
1027
-
1037
.
39.
Gandhirajan
RK
,
Staib
PA
,
Minke
K
, et al
.
Small molecule inhibitors of Wnt/beta-catenin/lef-1 signaling induces apoptosis in chronic lymphocytic leukemia cells in vitro and in vivo
.
Neoplasia
.
2010
;
12
(
4
):
326
-
335
.
40.
Lepourcelet
M
,
Chen
YN
,
France
DS
, et al
.
Small-molecule antagonists of the oncogenic Tcf/beta-catenin protein complex
.
Cancer Cell
.
2004
;
5
(
1
):
91
-
102
.
41.
Clevers
H
.
Wnt/beta-catenin signaling in development and disease
.
Cell
.
2006
;
127
(
3
):
469
-
480
.
42.
Clevers
H
,
Nusse
R
.
Wnt/β-catenin signaling and disease
.
Cell
.
2012
;
149
(
6
):
1192
-
1205
.
43.
Ioannidis
V
,
Beermann
F
,
Clevers
H
,
Held
W
.
The beta-catenin–TCF-1 pathway ensures CD4(+)CD8(+) thymocyte survival
.
Nat Immunol
.
2001
;
2
(
8
):
691
-
697
.
44.
Xu
Y
,
Banerjee
D
,
Huelsken
J
,
Birchmeier
W
,
Sen
JM
.
Deletion of beta-catenin impairs T cell development
.
Nat Immunol
.
2003
;
4
(
12
):
1177
-
1182
.
45.
Ranheim
EA
,
Kwan
HC
,
Reya
T
,
Wang
YK
,
Weissman
IL
,
Francke
U
.
Frizzled 9 knock-out mice have abnormal B-cell development
.
Blood
.
2005
;
105
(
6
):
2487
-
2494
.
46.
Jin
ZX
,
Kishi
H
,
Wei
XC
,
Matsuda
T
,
Saito
S
,
Muraguchi
A
.
Lymphoid enhancer-binding factor-1 binds and activates the recombination-activating gene-2 promoter together with c-Myb and Pax-5 in immature B cells
.
J Immunol
.
2002
;
169
(
7
):
3783
-
3792
.
47.
Korinek
V
,
Barker
N
,
Morin
PJ
, et al
.
Constitutive transcriptional activation by a beta-catenin-Tcf complex in APC-/- colon carcinoma
.
Science
.
1997
;
275
(
5307
):
1784
-
1787
.
48.
van de Wetering
M
,
Sancho
E
,
Verweij
C
, et al
.
The beta-catenin/TCF-4 complex imposes a crypt progenitor phenotype on colorectal cancer cells
.
Cell
.
2002
;
111
(
2
):
241
-
250
.
49.
Atcha
FA
,
Munguia
JE
,
Li
TW
,
Hovanes
K
,
Waterman
ML
.
A new beta-catenin-dependent activation domain in T cell factor
.
J Biol Chem
.
2003
;
278
(
18
):
16169
-
16175
.
50.
Hoverter
NP
,
Zeller
MD
,
McQuade
MM
, et al
.
The TCF C-clamp DNA binding domain expands the Wnt transcriptome via alternative target recognition
.
Nucleic Acids Res
.
2014
;
42
(
22
):
13615
-
13632
.
51.
Atcha
FA
,
Syed
A
,
Wu
B
, et al
.
A unique DNA binding domain converts T-cell factors into strong Wnt effectors
.
Mol Cell Biol
.
2007
;
27
(
23
):
8352
-
8363
.
52.
Weise
A
,
Bruser
K
,
Elfert
S
, et al
.
Alternative splicing of Tcf7l2 transcripts generates protein variants with differential promoter-binding and transcriptional activation properties at Wnt/beta-catenin targets
.
Nucleic Acids Res
.
2010
;
38
(
6
):
1964
-
1981
.
53.
Skokowa
J
,
Cario
G
,
Uenalan
M
, et al
.
LEF-1 is crucial for neutrophil granulocytopoiesis and its expression is severely reduced in congenital neutropenia [published correction appears in Nat Med. 2006;12(11):1329]
.
Nat Med
.
2006
;
12
(
10
):
1191
-
1197
.
54.
Skokowa
J
,
Fobiwe
JP
,
Dan
L
,
Thakur
BK
,
Welte
K
.
Neutrophil elastase is severely down-regulated in severe congenital neutropenia independent of ELA2 or HAX1 mutations but dependent on LEF-1
.
Blood
.
2009
;
114
(
14
):
3044
-
3051
.
55.
Gupta
K
,
Kuznetsova
I
,
Klimenkova
O
, et al
.
Bortezomib inhibits STAT5-dependent degradation of LEF-1, inducing granulocytic differentiation in congenital neutropenia CD34(+) cells
.
Blood
.
2014
;
123
(
16
):
2550
-
2561
.
56.
Dong
F
,
Brynes
RK
,
Tidow
N
,
Welte
K
,
Löwenberg
B
,
Touw
IP
.
Mutations in the gene for the granulocyte colony-stimulating-factor receptor in patients with acute myeloid leukemia preceded by severe congenital neutropenia
.
N Engl J Med
.
1995
;
333
(
8
):
487
-
493
.
57.
Hermans
MH
,
Ward
AC
,
Antonissen
C
,
Karis
A
,
Löwenberg
B
,
Touw
IP
.
Perturbed granulopoiesis in mice with a targeted mutation in the granulocyte colony-stimulating factor receptor gene associated with severe chronic neutropenia
.
Blood
.
1998
;
92
(
1
):
32
-
39
.
58.
Kobayashi
M
,
Yumiba
C
,
Kawaguchi
Y
, et al
.
Abnormal responses of myeloid progenitor cells to recombinant human colony-stimulating factors in congenital neutropenia
.
Blood
.
1990
;
75
(
11
):
2143
-
2149
.
59.
Welte
K
,
Zeidler
C
,
Reiter
A
, et al
.
Differential effects of granulocyte-macrophage colony-stimulating factor and granulocyte colony-stimulating factor in children with severe congenital neutropenia
.
Blood
.
1990
;
75
(
5
):
1056
-
1063
.
60.
Nauseef
WM
,
Borregaard
N
.
Neutrophils at work
.
Nat Immunol
.
2014
;
15
(
7
):
602
-
611
.
You do not currently have access to this content.

Sign in via your Institution

Sign In