Key Points

  • Substrate reduction therapy by iron restriction–mediated downregulation of ALAS2 efficiently reduces porphyrin accumulation in CEP.

  • Iron chelation decreases porphyrin overload and reverses hemolytic anemia and skin photosensitivity in CEP mice.

Abstract

Congenital erythropoietic porphyria (CEP) is an inborn error of heme synthesis resulting from uroporphyrinogen III synthase (UROS) deficiency and the accumulation of nonphysiological porphyrin isomer I metabolites. Clinical features are heterogeneous among patients with CEP but usually combine skin photosensitivity and chronic hemolytic anemia, the severity of which is related to porphyrin overload. Therapeutic options include symptomatic strategies only and are unsatisfactory. One promising approach to treating CEP is to reduce the erythroid production of porphyrins through substrate reduction therapy by inhibiting 5-aminolevulinate synthase 2 (ALAS2), the first and rate-limiting enzyme in the heme biosynthetic pathway. We efficiently reduced porphyrin accumulation after RNA interference–mediated downregulation of ALAS2 in human erythroid cellular models of CEP disease. Taking advantage of the physiological iron-dependent posttranscriptional regulation of ALAS2, we evaluated whether iron chelation with deferiprone could decrease ALAS2 expression and subsequent porphyrin production in vitro and in vivo in a CEP murine model. Treatment with deferiprone of UROS-deficient erythroid cell lines and peripheral blood CD34+-derived erythroid cultures from a patient with CEP inhibited iron-dependent protein ALAS2 and iron-responsive element–binding protein 2 expression and reduced porphyrin production. Furthermore, porphyrin accumulation progressively decreased in red blood cells and urine, and skin photosensitivity in CEP mice treated with deferiprone (1 or 3 mg/mL in drinking water) for 26 weeks was reversed. Hemolysis and iron overload improved upon iron chelation with full correction of anemia in CEP mice treated at the highest dose of deferiprone. Our findings highlight, in both mouse and human models, the therapeutic potential of iron restriction to modulate the phenotype in CEP.

REFERENCES

REFERENCES
1.
Bissell
DM
,
Anderson
KE
,
Bonkovsky
HL
.
Porphyria
.
N Engl J Med
.
2017
;
377
(
9
):
862
-
872
.
2.
Erwin
AL
,
Desnick
RJ
.
Congenital erythropoietic porphyria: recent advances
.
Mol Genet Metab
.
2019
;
128
(
3
):
288
-
297
.
3.
Di Pierro
E
,
Brancaleoni
V
,
Granata
F
.
Advances in understanding the pathogenesis of congenital erythropoietic porphyria
.
Br J Haematol
.
2016
;
173
(
3
):
365
-
379
.
4.
Katugampola
RP
,
Badminton
MN
,
Finlay
AY
, et al
.
Congenital erythropoietic porphyria: a single-observer clinical study of 29 cases
.
Br J Dermatol
.
2012
;
167
(
4
):
901
-
913
.
5.
Weiss
Y
,
Balwani
M
,
Chen
B
,
Yasuda
M
,
Nazarenko
I
,
Desnick
RJ
.
Congenital erythropoietic porphyria and erythropoietic protoporphyria: identification of 7 uroporphyrinogen III synthase and 20 ferrochelatase novel mutations
.
Mol Genet Metab
.
2019
;
128
(
3
):
358
-
362
.
6.
Blouin
JM
,
Duchartre
Y
,
Costet
P
, et al
.
Therapeutic potential of proteasome inhibitors in congenital erythropoietic porphyria
.
Proc Natl Acad Sci U S A
.
2013
;
110
(
45
):
18238
-
18243
.
7.
Blouin
JM
,
Bernardo-Seisdedos
G
,
Sasso
E
, et al
.
Missense UROS mutations causing congenital erythropoietic porphyria reduce UROS homeostasis that can be rescued by proteasome inhibition
.
Hum Mol Genet
.
2017
;
26
(
8
):
1565
-
1576
.
8.
Urquiza
P
,
Laín
A
,
Sanz-Parra
A
, et al
.
Repurposing ciclopirox as a pharmacological chaperone in a model of congenital erythropoietic porphyria
.
Sci Transl Med
.
2018
;
10
(
459
):
eaat7467
.
9.
Katugampola
RP
,
Anstey
AV
,
Finlay
AY
, et al
.
A management algorithm for congenital erythropoietic porphyria derived from a study of 29 cases
.
Br J Dermatol
.
2012
;
167
(
4
):
888
-
900
.
10.
Martinez Peinado
C
,
Díaz de Heredia
C
,
To-Figueras
J
, et al
.
Successful treatment of congenital erythropoietic porphyria using matched unrelated hematopoietic stem cell transplantation
.
Pediatr Dermatol
.
2013
;
30
(
4
):
484
-
489
.
11.
Richard
E
,
Robert-Richard
E
,
Ged
C
,
Moreau-Gaudry
F
,
de Verneuil
H
.
Erythropoietic porphyrias: animal models and update in gene-based therapies
.
Curr Gene Ther
.
2008
;
8
(
3
):
176
-
186
.
12.
Robert-Richard
E
,
Moreau-Gaudry
F
,
Lalanne
M
, et al
.
Effective gene therapy of mice with congenital erythropoietic porphyria is facilitated by a survival advantage of corrected erythroid cells
.
Am J Hum Genet
.
2008
;
82
(
1
):
113
-
124
.
13.
Bedel
A
,
Taillepierre
M
,
Guyonnet-Duperat
V
, et al
.
Metabolic correction of congenital erythropoietic porphyria with iPSCs free of reprogramming factors
.
Am J Hum Genet
.
2012
;
91
(
1
):
109
-
121
.
14.
Gambello
MJ
,
Li
H
.
Current strategies for the treatment of inborn errors of metabolism
.
J Genet Genomics
.
2018
;
45
(
2
):
61
-
70
.
15.
Peoc’h
K
,
Nicolas
G
,
Schmitt
C
, et al
.
Regulation and tissue-specific expression of δ-aminolevulinic acid synthases in non-syndromic sideroblastic anemias and porphyrias
.
Mol Genet Metab
.
2019
;
128
(
3
):
190
-
197
.
16.
Melefors
O
,
Goossen
B
,
Johansson
HE
,
Stripecke
R
,
Gray
NK
,
Hentze
MW
.
Translational control of 5-aminolevulinate synthase mRNA by iron-responsive elements in erythroid cells
.
J Biol Chem
.
1993
;
268
(
8
):
5974
-
5978
.
17.
Sadlon
TJ
,
Dell’Oso
T
,
Surinya
KH
,
May
BK
.
Regulation of erythroid 5-aminolevulinate synthase expression during erythropoiesis
.
Int J Biochem Cell Biol
.
1999
;
31
(
10
):
1153
-
1167
.
18.
To-Figueras
J
,
Ducamp
S
,
Clayton
J
, et al
.
ALAS2 acts as a modifier gene in patients with congenital erythropoietic porphyria
.
Blood
.
2011
;
118
(
6
):
1443
-
1451
.
19.
Barman-Aksözen
J
,
Minder
EI
,
Schubiger
C
,
Biolcati
G
,
Schneider-Yin
X
.
In ferrochelatase-deficient protoporphyria patients, ALAS2 expression is enhanced and erythrocytic protoporphyrin concentration correlates with iron availability
.
Blood Cells Mol Dis
.
2015
;
54
(
1
):
71
-
77
.
20.
Barman-Aksözen
J
,
Halloy
F
,
Iyer
PS
, et al
.
Delta-aminolevulinic acid synthase 2 expression in combination with iron as modifiers of disease severity in erythropoietic protoporphyria
.
Mol Genet Metab
.
2019
;
128
(
3
):
304
-
308
.
21.
Egan
DN
,
Yang
Z
,
Phillips
J
,
Abkowitz
JL
.
Inducing iron deficiency improves erythropoiesis and photosensitivity in congenital erythropoietic porphyria
.
Blood
.
2015
;
126
(
2
):
257
-
261
.
22.
Mirmiran
A
,
Poli
A
,
Ged
C
, et al
.
Phlebotomy as an efficient long-term treatment of congenital erythropoietic porphyria [published online ahead of print 2020 January 9]
.
Haematologica
.
doi: 10.3324/haematol.2019.228270
.
23.
Neildez-Nguyen
TM
,
Wajcman
H
,
Marden
MC
, et al
.
Human erythroid cells produced ex vivo at large scale differentiate into red blood cells in vivo
.
Nat Biotechnol
.
2002
;
20
(
5
):
467
-
472
.
24.
Robert-Richard
E
,
Lalanne
M
,
Lamrissi-Garcia
I
, et al
.
Modeling of congenital erythropoietic porphyria by RNA interference: a new tool for preclinical gene therapy evaluation
.
J Gene Med
.
2010
;
12
(
8
):
637
-
646
.
25.
Douillard-Guilloux
G
,
Raben
N
,
Takikita
S
,
Batista
L
,
Caillaud
C
,
Richard
E
.
Modulation of glycogen synthesis by RNA interference: towards a new therapeutic approach for glycogenosis type II
.
Hum Mol Genet
.
2008
;
17
(
24
):
3876
-
3886
.
26.
Ged
C
,
Mendez
M
,
Robert
E
, et al
.
A knock-in mouse model of congenital erythropoietic porphyria
.
Genomics
.
2006
;
87
(
1
):
84
-
92
.
27.
Hider
RC
,
Hoffbrand
AV
.
The role of deferiprone in iron chelation
.
N Engl J Med
.
2018
;
379
(
22
):
2140
-
2150
.
28.
Wilkinson
N
,
Pantopoulos
K
.
The IRP/IRE system in vivo: insights from mouse models
.
Front Pharmacol
.
2014
;
5
(
176
):
176
.
29.
Millot
S
,
Delaby
C
,
Moulouel
B
, et al
.
Hemolytic anemia repressed hepcidin level without hepatocyte iron overload: lesson from Günther disease model
.
Haematologica
.
2017
;
102
(
2
):
260
-
270
.
30.
Lefebvre
T
,
Millot
S
,
Richard
E
, et al
.
Genetic background influences hepcidin response to iron imbalance in a mouse model of hemolytic anemia (congenital erythropoietic porphyria)
.
Biochem Biophys Res Commun
.
2019
;
520
(
2
):
297
-
303
.
31.
Sheth
S
.
Iron chelation: an update
.
Curr Opin Hematol
.
2014
;
21
(
3
):
179
-
185
.
32.
Schmidt
PJ
,
Hollowell
ML
,
Fitzgerald
K
,
Butler
JS
,
Fleming
MD
.
Mild iron deficiency does not ameliorate the phenotype of a murine erythropoietic protoporphyria model
.
Am J Hematol
.
2020
;
95
(
5
):
492
-
496
.
33.
Lange
B
,
Hofweber
K
,
Waldherr
R
,
Schärer
K
.
Congenital erythropoietic porphyria associated with nephrotic syndrome and renal siderosis
.
Acta Paediatr
.
1995
;
84
(
11
):
1325
-
1328
.
34.
Sardh
E
,
Harper
P
,
Balwani
M
, et al
.
Phase 1 Trial of an RNA Interference Therapy for Acute Intermittent Porphyria
.
N Engl J Med
.
2019
;
380
(
6
):
549
-
558
.
35.
Fratz-Berilla
EJ
,
Breydo
L
,
Gouya
L
,
Puy
H
,
Uversky
VN
,
Ferreira
GC
.
Isoniazid inhibits human erythroid 5-aminolevulinate synthase: molecular mechanism and tolerance study with four X-linked protoporphyria patients
.
Biochim Biophys Acta Mol Basis Dis
.
2017
;
1863
(
2
):
428
-
439
.
36.
Parker
CJ
,
Desnick
RJ
,
Bissel
MD
, et al
.
Results of a pilot study of isoniazid in patients with erythropoietic protoporphyria
.
Mol Genet Metab
.
2019
;
128
(
3
):
309
-
313
.
You do not currently have access to this content.