Key Points

  • Inhibition of the menin-MLL interaction targets FLT3 mutations transcriptionally via MEIS1 in NPM1-mutant and MLL-rearranged leukemias.

  • Combined menin-MLL and FLT3 inhibition is a synergistic therapeutic opportunity in these leukemia subtypes with concurrent FLT3 mutation.

Abstract

The interaction of menin (MEN1) and MLL (MLL1, KMT2A) is a dependency and provides a potential opportunity for treatment of NPM1-mutant (NPM1mut) and MLL-rearranged (MLL-r) leukemias. Concomitant activating driver mutations in the gene encoding the tyrosine kinase FLT3 occur in both leukemias and are particularly common in the NPM1mut subtype. In this study, transcriptional profiling after pharmacological inhibition of the menin-MLL complex revealed specific changes in gene expression, with downregulation of the MEIS1 transcription factor and its transcriptional target gene FLT3 being the most pronounced. Combining menin-MLL inhibition with specific small-molecule kinase inhibitors of FLT3 phosphorylation resulted in a significantly superior reduction of phosphorylated FLT3 and transcriptional suppression of genes downstream of FLT3 signaling. The drug combination induced synergistic inhibition of proliferation, as well as enhanced apoptosis, compared with single-drug treatment in models of human and murine NPM1mut and MLL-r leukemias harboring an FLT3 mutation. Primary acute myeloid leukemia (AML) cells harvested from patients with NPM1mutFLT3mut AML showed significantly better responses to combined menin and FLT3 inhibition than to single-drug or vehicle control treatment, whereas AML cells with wild-type NPM1, MLL, and FLT3 were not affected by either of the 2 drugs. In vivo treatment of leukemic animals with MLL-r FLT3mut leukemia reduced leukemia burden significantly and prolonged survival compared with results in the single-drug and vehicle control groups. Our data suggest that combined menin-MLL and FLT3 inhibition represents a novel and promising therapeutic strategy for patients with NPM1mut or MLL-r leukemia and concurrent FLT3 mutation.

REFERENCES

REFERENCES
1.
Arber
DA
,
Orazi
A
,
Hasserjian
R
, et al
.
The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia
.
Blood
.
2016
;
127
(
20
):
2391
-
2405
.
2.
Döhner
H
,
Weisdorf
DJ
,
Bloomfield
CD
.
Acute Myeloid Leukemia
.
N Engl J Med
.
2015
;
373
(
12
):
1136
-
1152
.
3.
Papaemmanuil
E
,
Gerstung
M
,
Bullinger
L
, et al
.
Genomic Classification and Prognosis in Acute Myeloid Leukemia
.
N Engl J Med
.
2016
;
374
(
23
):
2209
-
2221
.
4.
Tyner
JW
,
Tognon
CE
,
Bottomly
D
, et al
.
Functional genomic landscape of acute myeloid leukaemia
.
Nature
.
2018
;
562
(
7728
):
526
-
531
.
5.
Ley
TJ
,
Miller
C
,
Ding
L
, et al;
Cancer Genome Atlas Research Network
.
Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia [published correction appears in N Engl J Med. 2013;369(1):98]
.
N Engl J Med
.
2013
;
368
(
22
):
2059
-
2074
.
6.
Döhner
H
,
Estey
E
,
Grimwade
D
, et al
.
Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel
.
Blood
.
2017
;
129
(
4
):
424
-
447
.
7.
Richard-Carpentier
G
,
DiNardo
CD
.
Single-agent and combination biologics in acute myeloid leukemia
.
Hematology Am Soc Hematol Educ Program
.
2019
;
2019
:
548
-
556
.
8.
Winer
ES
,
Stone
RM
.
Novel therapy in Acute myeloid leukemia (AML): moving toward targeted approaches
.
Ther Adv Hematol
.
2019
;
10
:
2040620719860645
.
9.
Wouters
BJ
,
Delwel
R
.
Epigenetics and approaches to targeted epigenetic therapy in acute myeloid leukemia
.
Blood
.
2016
;
127
(
1
):
42
-
52
.
10.
Bewersdorf
JP
,
Shallis
R
,
Stahl
M
,
Zeidan
AM
.
Epigenetic therapy combinations in acute myeloid leukemia: what are the options?
Ther Adv Hematol
.
2019
;
10
:
2040620718816698
.
11.
Grembecka
J
,
He
S
,
Shi
A
, et al
.
Menin-MLL inhibitors reverse oncogenic activity of MLL fusion proteins in leukemia
.
Nat Chem Biol
.
2012
;
8
(
3
):
277
-
284
.
12.
Rao
RC
,
Dou
Y
.
Hijacked in cancer: the KMT2 (MLL) family of methyltransferases
.
Nat Rev Cancer
.
2015
;
15
(
6
):
334
-
346
.
13.
Brien
GL
,
Stegmaier
K
,
Armstrong
SA
.
Targeting chromatin complexes in fusion protein-driven malignancies
.
Nat Rev Cancer
.
2019
;
19
(
5
):
255
-
269
.
14.
Armstrong
SA
,
Staunton
JE
,
Silverman
LB
, et al
.
MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia
.
Nat Genet
.
2002
;
30
(
1
):
41
-
47
.
15.
Guo
H
,
Chu
Y
,
Wang
L
, et al
.
PBX3 is essential for leukemia stem cell maintenance in MLL-rearranged leukemia
.
Int J Cancer
.
2017
;
141
(
2
):
324
-
335
.
16.
Placke
T
,
Faber
K
,
Nonami
A
, et al
.
Requirement for CDK6 in MLL-rearranged acute myeloid leukemia
.
Blood
.
2014
;
124
(
1
):
13
-
23
.
17.
Brown
FC
,
Still
E
,
Koche
RP
, et al
.
MEF2C Phosphorylation Is Required for Chemotherapy Resistance in Acute Myeloid Leukemia
.
Cancer Discov
.
2018
;
8
(
4
):
478
-
497
.
18.
Yokoyama
A
,
Somervaille
TCP
,
Smith
KS
,
Rozenblatt-Rosen
O
,
Meyerson
M
,
Cleary
ML
.
The menin tumor suppressor protein is an essential oncogenic cofactor for MLL-associated leukemogenesis
.
Cell
.
2005
;
123
(
2
):
207
-
218
.
19.
Yokoyama
A
,
Cleary
ML
.
Menin critically links MLL proteins with LEDGF on cancer-associated target genes
.
Cancer Cell
.
2008
;
14
(
1
):
36
-
46
.
20.
Borkin
D
,
He
S
,
Miao
H
, et al
.
Pharmacologic inhibition of the Menin-MLL interaction blocks progression of MLL leukemia in vivo
.
Cancer Cell
.
2015
;
27
(
4
):
589
-
602
.
21.
He
S
,
Malik
B
,
Borkin
D
, et al
.
Menin-MLL inhibitors block oncogenic transformation by MLL-fusion proteins in a fusion partner-independent manner
.
Leukemia
.
2016
;
30
(
2
):
508
-
513
.
22.
Krivtsov
AV
,
Evans
K
,
Gadrey
JY
, et al
.
A Menin-MLL Inhibitor Induces Specific Chromatin Changes and Eradicates Disease in Models of MLL-Rearranged Leukemia
.
Cancer Cell
.
2019
;
36
(
6
):
660
-
673.e11
.
23.
Borkin
D
,
Pollock
J
,
Kempinska
K
, et al
.
Property Focused Structure-Based Optimization of Small Molecule Inhibitors of the Protein-Protein Interaction between Menin and Mixed Lineage Leukemia (MLL)
.
J Med Chem
.
2016
;
59
(
3
):
892
-
913
.
24.
Borkin
D
,
Klossowski
S
,
Pollock
J
, et al
.
Complexity of Blocking Bivalent Protein-Protein Interactions: Development of a Highly Potent Inhibitor of the Menin-Mixed-Lineage Leukemia Interaction
.
J Med Chem
.
2018
;
61
(
11
):
4832
-
4850
.
25.
Shi
A
,
Murai
MJ
,
He
S
, et al
.
Structural insights into inhibition of the bivalent menin-MLL interaction by small molecules in leukemia
.
Blood
.
2012
;
120
(
23
):
4461
-
4469
.
26.
Kühn
MWM
,
Song
E
,
Feng
Z
, et al
.
Targeting Chromatin Regulators Inhibits Leukemogenic Gene Expression in NPM1 Mutant Leukemia
.
Cancer Discov
.
2016
;
6
(
10
):
1166
-
1181
.
27.
Uckelmann
HJ
,
Kim
SM
,
Wong
EM
, et al
.
Therapeutic targeting of preleukemia cells in a mouse model of NPM1 mutant acute myeloid leukemia
.
Science
.
2020
;
367
(
6477
):
586
-
590
.
28.
Klossowski
S
,
Miao
H
,
Kempinska
K
, et al
.
Menin inhibitor MI-3454 induces remission in MLL1-rearranged and NPM1-mutated models of leukemia
.
J Clin Invest
.
2020
;
130
(
2
):
981
-
997
.
29.
Kühn
MWM
,
Bullinger
L
,
Gröschel
S
, et al
.
Genome-wide genotyping of acute myeloid leukemia with translocation t(9;11)(p22;q23) reveals novel recurrent genomic alterations
.
Haematologica
.
2014
;
99
(
8
):
e133
-
e135
.
30.
Andersson
AK
,
Ma
J
,
Wang
J
, et al;
St. Jude Children’s Research Hospital–Washington University Pediatric Cancer Genome Project
.
The landscape of somatic mutations in infant MLL-rearranged acute lymphoblastic leukemias
.
Nat Genet
.
2015
;
47
(
4
):
330
-
337
.
31.
Lavallée
V-P
,
Baccelli
I
,
Krosl
J
, et al
.
The transcriptomic landscape and directed chemical interrogation of MLL-rearranged acute myeloid leukemias
.
Nat Genet
.
2015
;
47
(
9
):
1030
-
1037
.
32.
Bullinger
L
,
Döhner
K
,
Döhner
H
.
Genomics of Acute Myeloid Leukemia Diagnosis and Pathways
.
J Clin Oncol
.
2017
;
35
(
9
):
934
-
946
.
33.
Gale
RE
,
Green
C
,
Allen
C
, et al;
Medical Research Council Adult Leukaemia Working Party
.
The impact of FLT3 internal tandem duplication mutant level, number, size, and interaction with NPM1 mutations in a large cohort of young adult patients with acute myeloid leukemia
.
Blood
.
2008
;
111
(
5
):
2776
-
2784
.
34.
Pratcorona
M
,
Brunet
S
,
Nomdedéu
J
, et al;
Grupo Cooperativo Para el Estudio y Tratamiento de las Leucemias Agudas Mieloblásticas
.
Favorable outcome of patients with acute myeloid leukemia harboring a low-allelic burden FLT3-ITD mutation and concomitant NPM1 mutation: relevance to post-remission therapy
.
Blood
.
2013
;
121
(
14
):
2734
-
2738
.
35.
Schlenk
RF
,
Kayser
S
,
Bullinger
L
, et al;
German-Austrian AML Study Group
.
Differential impact of allelic ratio and insertion site in FLT3-ITD-positive AML with respect to allogeneic transplantation
.
Blood
.
2014
;
124
(
23
):
3441
-
3449
.
36.
Linch
DC
,
Hills
RK
,
Burnett
AK
,
Khwaja
A
,
Gale
RE
.
Impact of FLT3(ITD) mutant allele level on relapse risk in intermediate-risk acute myeloid leukemia
.
Blood
.
2014
;
124
(
2
):
273
-
276
.
37.
Stone
RM
,
Mandrekar
SJ
,
Sanford
BL
, et al
.
Midostaurin plus Chemotherapy for Acute Myeloid Leukemia with a FLT3 Mutation
.
N Engl J Med
.
2017
;
377
(
5
):
454
-
464
.
38.
Perl
AE
,
Martinelli
G
,
Cortes
JE
, et al
.
Gilteritinib or Chemotherapy for Relapsed or Refractory FLT3-Mutated AML
.
N Engl J Med
.
2019
;
381
(
18
):
1728
-
1740
.
39.
Cortes
JE
,
Khaled
S
,
Martinelli
G
, et al
.
Quizartinib versus salvage chemotherapy in relapsed or refractory FLT3-ITD acute myeloid leukaemia (QuANTUM-R): a multicentre, randomised, controlled, open-label, phase 3 trial
.
Lancet Oncol
.
2019
;
20
(
7
):
984
-
997
.
40.
Smith
CC
.
The growing landscape of FLT3 inhibition in AML
.
Hematology Am Soc Hematol Educ Program
.
2019
;
2019
:
539
-
547
.
41.
Stone
RM
.
What FLT3 inhibitor holds the greatest promise?
Best Pract Res Clin Haematol
.
2018
;
31
(
4
):
401
-
404
.
42.
Castro
F
,
Dirks
WG
,
Fähnrich
S
,
Hotz-Wagenblatt
A
,
Pawlita
M
,
Schmitt
M
.
High-throughput SNP-based authentication of human cell lines
.
Int J Cancer
.
2013
;
132
(
2
):
308
-
314
.
43.
Kühn
MWM
,
Hadler
MJ
,
Daigle
SR
, et al
.
MLL partial tandem duplication leukemia cells are sensitive to small molecule DOT1L inhibition
.
Haematologica
.
2015
;
100
(
5
):
e190
-
e193
.
44.
Vassiliou
GS
,
Cooper
JL
,
Rad
R
, et al
.
Mutant nucleophosmin and cooperating pathways drive leukemia initiation and progression in mice
.
Nat Genet
.
2011
;
43
(
5
):
470
-
475
.
45.
Mupo
A
,
Celani
L
,
Dovey
O
, et al
.
A powerful molecular synergy between mutant Nucleophosmin and Flt3-ITD drives acute myeloid leukemia in mice
.
Leukemia
.
2013
;
27
(
9
):
1917
-
1920
.
46.
Chou
T-C
.
Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies
.
Pharmacol Rev
.
2006
;
58
(
3
):
621
-
681
.
47.
Lovén
J
,
Orlando
DA
,
Sigova
AA
, et al
.
Revisiting global gene expression analysis
.
Cell
.
2012
;
151
(
3
):
476
-
482
.
48.
Dovey
OM
,
Chen
B
,
Mupo
A
, et al
.
Identification of a germline F692L drug resistance variant in cis with Flt3-internal tandem duplication in knock-in mice
.
Haematologica
.
2016
;
101
(
8
):
e328
-
e331
.
49.
Knapper
S
,
Burnett
AK
,
Littlewood
T
, et al
.
A phase 2 trial of the FLT3 inhibitor lestaurtinib (CEP701) as first-line treatment for older patients with acute myeloid leukemia not considered fit for intensive chemotherapy
.
Blood
.
2006
;
108
(
10
):
3262
-
3270
.
50.
Weisberg
E
,
Ray
A
,
Nelson
E
, et al
.
Reversible resistance induced by FLT3 inhibition: a novel resistance mechanism in mutant FLT3-expressing cells
.
PLoS One
.
2011
;
6
(
9
):
e25351
.
51.
Jetani
H
,
Garcia-Cadenas
I
,
Nerreter
T
, et al
.
CAR T-cells targeting FLT3 have potent activity against FLT3-ITD+ AML and act synergistically with the FLT3 inhibitor crenolanib
.
Leukemia
.
2018
;
32
(
5
):
1168
-
1179
.
52.
Huang
Y
,
Sitwala
K
,
Bronstein
J
, et al
.
Identification and characterization of Hoxa9 binding sites in hematopoietic cells
.
Blood
.
2012
;
119
(
2
):
388
-
398
.
53.
Garcia-Cuellar
M-P
,
Steger
J
,
Füller
E
,
Hetzner
K
,
Slany
RK
.
Pbx3 and Meis1 cooperate through multiple mechanisms to support Hox-induced murine leukemia
.
Haematologica
.
2015
;
100
(
7
):
905
-
913
.
54.
Wang
GG
,
Pasillas
MP
,
Kamps
MP
.
Meis1 programs transcription of FLT3 and cancer stem cell character, using a mechanism that requires interaction with Pbx and a novel function of the Meis1 C-terminus
.
Blood
.
2005
;
106
(
1
):
254
-
264
.
55.
Schlenk
RF
,
Döhner
K
,
Krauter
J
, et al;
German-Austrian Acute Myeloid Leukemia Study Group
.
Mutations and treatment outcome in cytogenetically normal acute myeloid leukemia
.
N Engl J Med
.
2008
;
358
(
18
):
1909
-
1918
.
56.
Kottaridis
PD
,
Gale
RE
,
Frew
ME
, et al
.
The presence of a FLT3 internal tandem duplication in patients with acute myeloid leukemia (AML) adds important prognostic information to cytogenetic risk group and response to the first cycle of chemotherapy: analysis of 854 patients from the United Kingdom Medical Research Council AML 10 and 12 trials
.
Blood
.
2001
;
98
(
6
):
1752
-
1759
.
57.
Perl
AE
.
Availability of FLT3 inhibitors: how do we use them?
Blood
.
2019
;
134
(
9
):
741
-
745
.
58.
Daver
N
,
Schlenk
RF
,
Russell
NH
,
Levis
MJ
.
Targeting FLT3 mutations in AML: review of current knowledge and evidence
.
Leukemia
.
2019
;
33
(
2
):
299
-
312
.
59.
Daver
N
,
Cortes
J
,
Ravandi
F
, et al
.
Secondary mutations as mediators of resistance to targeted therapy in leukemia
.
Blood
.
2015
;
125
(
21
):
3236
-
3245
.
60.
Ley
TJ
,
Miller
C
,
Ding
L
, et al;
Cancer Genome Atlas Research Network
.
Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia [published correction appears in N Engl J Med. 2013 Jul 4;369(1):98]
.
N Engl J Med
.
2013
;
368
(
22
):
2059
-
2074
.
61.
Shlush
LI
,
Zandi
S
,
Mitchell
A
, et al;
HALT Pan-Leukemia Gene Panel Consortium
.
Identification of pre-leukaemic haematopoietic stem cells in acute leukaemia
.
Nature
.
2014
;
506
(
7488
):
328
-
333
.
62.
Krönke
J
,
Bullinger
L
,
Teleanu
V
, et al
.
Clonal evolution in relapsed NPM1-mutated acute myeloid leukemia
.
Blood
.
2013
;
122
(
1
):
100
-
108
.
63.
Engert
A
,
Balduini
C
,
Brand
A
, et al;
EHA Roadmap for European Hematology Research
.
The European Hematology Association Roadmap for European Hematology Research: a consensus document
.
Haematologica
.
2016
;
101
(
2
):
115
-
208
.
64.
Spiekermann
K
,
Bagrintseva
K
,
Schwab
R
,
Schmieja
K
,
Hiddemann
W
.
Overexpression and constitutive activation of FLT3 induces STAT5 activation in primary acute myeloid leukemia blast cells
.
Clin Cancer Res
.
2003
;
9
(
6
):
2140
-
2150
.
65.
Chatterjee
A
,
Ghosh
J
,
Ramdas
B
, et al
.
Regulation of Stat5 by FAK and PAK1 in Oncogenic FLT3- and KIT-Driven Leukemogenesis
.
Cell Rep
.
2014
;
9
(
4
):
1333
-
1348
.
66.
Wingelhofer
B
,
Maurer
B
,
Heyes
EC
, et al
.
Pharmacologic inhibition of STAT5 in acute myeloid leukemia
.
Leukemia
.
2018
;
32
(
5
):
1135
-
1146
.
67.
Wong
P
,
Iwasaki
M
,
Somervaille
TCP
,
So
CW
,
Cleary
ML
.
Meis1 is an essential and rate-limiting regulator of MLL leukemia stem cell potential
.
Genes Dev
.
2007
;
21
(
21
):
2762
-
2774
.
68.
Li
Z
,
Chen
P
,
Su
R
, et al
.
PBX3 and MEIS1 Cooperate in Hematopoietic Cells to Drive Acute Myeloid Leukemias Characterized by a Core Transcriptome of the MLL-Rearranged Disease
.
Cancer Res
.
2016
;
76
(
3
):
619
-
629
.
You do not currently have access to this content.