Key Points

  • CRISPR-modified CD38KO ex vivo expanded primary NK cells show enhanced DARA-mediated cytotoxic effect against MM.

  • CD38KO NK cells have increased oxidative metabolism.

Abstract

Multiple myeloma (MM) is a plasma cell neoplasm that commonly expresses CD38. Daratumumab (DARA), a human monoclonal antibody targeting CD38, has significantly improved the outcome of patients with relapsed or refractory MM, but the response is transient in most cases. Putative mechanisms of suboptimal efficacy of DARA include downregulation of CD38 expression and overexpression of complement inhibitory proteins on MM target cells as well as DARA-induced depletion of CD38high natural killer (NK) cells resulting in crippled antibody-dependent cellular cytotoxicity (ADCC). Here, we tested whether maintaining NK cell function during DARA therapy could maximize DARA-mediated ADCC against MM cells and deepen the response. We used the CRISPR/Cas9 system to delete CD38 (CD38KO) in ex vivo expanded peripheral blood NK cells. These CD38KO NK cells were completely resistant to DARA-induced fratricide, showed superior persistence in immune-deficient mice pretreated with DARA, and enhanced ADCC activity against CD38-expressing MM cell lines and primary MM cells. In addition, transcriptomic and cellular metabolic analysis demonstrated that CD38KO NK cells have unique metabolic reprogramming with higher mitochondrial respiratory capacity. Finally, we evaluated the impact of exposure to all-trans retinoic acid (ATRA) on wild-type NK and CD38KO NK cell function and highlighted potential benefits and drawbacks of combining ATRA with DARA in patients with MM. Taken together, these findings provide proof of concept that adoptive immunotherapy using ex vivo expanded CD38KO NK cells has the potential to boost DARA activity in MM.

REFERENCES

REFERENCES
1.
Raab
MS
,
Podar
K
,
Breitkreutz
I
,
Richardson
PG
,
Anderson
KC
.
Multiple myeloma
.
Lancet
.
2009
;
374
(
9686
):
324
-
339
.
2.
Laubach
J
,
Garderet
L
,
Mahindra
A
, et al
.
Management of relapsed multiple myeloma: recommendations of the International Myeloma Working Group
.
Leukemia
.
2016
;
30
(
5
):
1005
-
1017
.
3.
Kumar
SK
,
Dimopoulos
MA
,
Kastritis
E
, et al
.
Natural history of relapsed myeloma, refractory to immunomodulatory drugs and proteasome inhibitors: a multicenter IMWG study
.
Leukemia
.
2017
;
31
(
11
):
2443
-
2448
.
4.
Usmani
SZ
,
Weiss
BM
,
Plesner
T
, et al
.
Clinical efficacy of daratumumab monotherapy in patients with heavily pretreated relapsed or refractory multiple myeloma
.
Blood
.
2016
;
128
(
1
):
37
-
44
.
5.
Dimopoulos
MA
,
Oriol
A
,
Nahi
H
, et al;
POLLUX Investigators
.
Daratumumab, lenalidomide, and dexamethasone for multiple myeloma
.
N Engl J Med
.
2016
;
375
(
14
):
1319
-
1331
.
6.
Martin
T
,
Baz
R
,
Benson
DM
, et al
.
A phase 1b study of isatuximab plus lenalidomide and dexamethasone for relapsed/refractory multiple myeloma
.
Blood
.
2017
;
129
(
25
):
3294
-
3303
.
7.
Mateos
MV
,
Dimopoulos
MA
,
Cavo
M
, et al;
ALCYONE Trial Investigators
.
Daratumumab plus bortezomib, melphalan, and prednisone for untreated myeloma
.
N Engl J Med
.
2018
;
378
(
6
):
518
-
528
.
8.
Bhatnagar
V
,
Gormley
NJ
,
Luo
L
, et al
.
FDA approval summary: Daratumumab for treatment of multiple myeloma after one prior therapy
.
Oncologist
.
2017
;
22
(
11
):
1347
-
1353
.
9.
Moreau
P
,
Attal
M
,
Hulin
C
, et al
.
Bortezomib, thalidomide, and dexamethasone with or without daratumumab before and after autologous stem-cell transplantation for newly diagnosed multiple myeloma (CASSIOPEIA): a randomised, open-label, phase 3 study
.
Lancet
.
2019
;
394
(
10192
):
29
-
38
.
10.
van de Donk
NW
,
Janmaat
ML
,
Mutis
T
, et al
.
Monoclonal antibodies targeting CD38 in hematological malignancies and beyond
.
Immunol Rev
.
2016
;
270
(
1
):
95
-
112
.
11.
Krejcik
J
,
Casneuf
T
,
Nijhof
IS
, et al
.
Daratumumab depletes CD38+ immune regulatory cells, promotes T-cell expansion, and skews T-cell repertoire in multiple myeloma
.
Blood
.
2016
;
128
(
3
):
384
-
394
.
12.
Gandhi
UH
,
Cornell
RF
,
Lakshman
A
, et al
.
Outcomes of patients with multiple myeloma refractory to CD38-targeted monoclonal antibody therapy
.
Leukemia
.
2019
;
33
(
9
):
2266
-
2275
.
13.
Nooka
AK
,
Joseph
NS
,
Kaufman
JL
, et al
.
Clinical efficacy of daratumumab, pomalidomide, and dexamethasone in patients with relapsed or refractory myeloma: Utility of re-treatment with daratumumab among refractory patients
.
Cancer
.
2019
;
125
(
17
):
2991
-
3000
.
14.
Baertsch
MA
,
Hundemer
M
,
Hillengass
J
,
Goldschmidt
H
,
Raab
MS
.
Therapeutic monoclonal antibodies in combination with pomalidomide can overcome refractoriness to both agents in multiple myeloma: A case-based approach
.
Hematol Oncol
.
2018
;
36
(
1
):
258
-
261
.
15.
Gavriatopoulou
M
,
Kastritis
E
,
Ntanasis-Stathopoulos
I
, et al
.
The addition of IMiDs for patients with daratumumab-refractory multiple myeloma can overcome refractoriness to both agents
.
Blood
.
2018
;
131
(
4
):
464
-
467
.
16.
van der Veer
MS
,
de Weers
M
,
van Kessel
B
, et al
.
Towards effective immunotherapy of myeloma: enhanced elimination of myeloma cells by combination of lenalidomide with the human CD38 monoclonal antibody daratumumab
.
Haematologica
.
2011
;
96
(
2
):
284
-
290
.
17.
Nijhof
IS
,
Groen
RW
,
Noort
WA
, et al
.
Preclinical evidence for the therapeutic potential of CD38-targeted immuno-chemotherapy in multiple myeloma patients refractory to lenalidomide and bortezomib
.
Clin Cancer Res
.
2015
;
21
(
12
):
2802
-
2810
.
18.
Fedele
PL
,
Willis
SN
,
Liao
Y
, et al
.
IMiDs prime myeloma cells for daratumumab-mediated cytotoxicity through loss of Ikaros and Aiolos
.
Blood
.
2018
;
132
(
20
):
2166
-
2178
.
19.
Nijhof
IS
,
Casneuf
T
,
van Velzen
J
, et al
.
CD38 expression and complement inhibitors affect response and resistance to daratumumab therapy in myeloma
.
Blood
.
2016
;
128
(
7
):
959
-
970
.
20.
Krejcik
J
,
Frerichs
KA
,
Nijhof
IS
, et al
.
Monocytes and granulocytes reduce CD38 expression levels on myeloma cells in patients treated with daratumumab
.
Clin Cancer Res
.
2017
;
23
(
24
):
7498
-
7511
.
21.
Kishimoto
H
,
Hoshino
S
,
Ohori
M
, et al
.
Molecular mechanism of human CD38 gene expression by retinoic acid. Identification of retinoic acid response element in the first intron
.
J Biol Chem
.
1998
;
273
(
25
):
15429
-
15434
.
22.
Uruno
A
,
Noguchi
N
,
Matsuda
K
, et al
.
All-trans retinoic acid and a novel synthetic retinoid tamibarotene (Am80) differentially regulate CD38 expression in human leukemia HL-60 cells: possible involvement of protein kinase C-delta
.
J Leukoc Biol
.
2011
;
90
(
2
):
235
-
247
.
23.
Nijhof
IS
,
Groen
RW
,
Lokhorst
HM
, et al
.
Upregulation of CD38 expression on multiple myeloma cells by all-trans retinoic acid improves the efficacy of daratumumab
.
Leukemia
.
2015
;
29
(
10
):
2039
-
2049
.
24.
Casneuf
T
,
Xu
XS
,
Adams
HC
III
, et al
.
Effects of daratumumab on natural killer cells and impact on clinical outcomes in relapsed or refractory multiple myeloma
.
Blood Adv
.
2017
;
1
(
23
):
2105
-
2114
.
25.
Wang
Y
,
Zhang
Y
,
Hughes
T
, et al
.
Fratricide of NK cells in daratumumab therapy for multiple myeloma overcome by ex vivo-expanded autologous NK cells
.
Clin Cancer Res
.
2018
;
24
(
16
):
4006
-
4017
.
26.
Rezvani
K
,
Rouce
R
,
Liu
E
,
Shpall
E
.
Engineering natural killer cells for cancer immunotherapy
.
Mol Ther
.
2017
;
25
(
8
):
1769
-
1781
.
27.
Naeimi Kararoudi
M
,
Dolatshad
H
,
Trikha
P
, et al
.
Generation of knock-out primary and expanded human NK cells using Cas9 ribonucleoproteins
.
J Vis Exp
.
2018
;(
136
):
58237
.
28.
Pomeroy
EJ
,
Hunzeker
JT
,
Kluesner
MG
, et al
.
A genetically engineered primary human natural killer cell platform for cancer immunotherapy
.
Mol Ther
.
2020
;
28
(
1
):
52
-
63
.
29.
Howard
M
,
Grimaldi
JC
,
Bazan
JF
, et al
.
Formation and hydrolysis of cyclic ADP-ribose catalyzed by lymphocyte antigen CD38
.
Science
.
1993
;
262
(
5136
):
1056
-
1059
.
30.
Chini
EN
.
CD38 as a regulator of cellular NAD: a novel potential pharmacological target for metabolic conditions
.
Curr Pharm Des
.
2009
;
15
(
1
):
57
-
63
.
31.
Hu
Y
,
Wang
H
,
Wang
Q
,
Deng
H
.
Overexpression of CD38 decreases cellular NAD levels and alters the expression of proteins involved in energy metabolism and antioxidant defense
.
J Proteome Res
.
2014
;
13
(
2
):
786
-
795
.
32.
Denman
CJ
,
Senyukov
VV
,
Somanchi
SS
, et al
.
Membrane-bound IL-21 promotes sustained ex vivo proliferation of human natural killer cells
.
PLoS One
.
2012
;
7
(
1
):
e30264
.
33.
Alonso
S
,
Hernandez
D
,
Chang
YT
, et al
.
Hedgehog and retinoid signaling alters multiple myeloma microenvironment and generates bortezomib resistance
.
J Clin Invest
.
2016
;
126
(
12
):
4460
-
4468
.
34.
Liu
J
,
Zhao
YJ
,
Li
WH
, et al
.
Cytosolic interaction of type III human CD38 with CIB1 modulates cellular cyclic ADP-ribose levels
.
Proc Natl Acad Sci USA
.
2017
;
114
(
31
):
8283
-
8288
.
35.
Kararoudi
MN
,
Likhite
S
,
Elmas
E
,
Schwartz
M
,
Meyer
K
,
Lee
DA
.
Highly efficient site-directed gene insertion in primary human natural killer cells using homologous recombination and CRISPaint delivered by AAV. Posted 22 August 2019
.
bioRxiv
. .
36.
Kelly
BJ
,
Fitch
JR
,
Hu
Y
, et al
.
Churchill: an ultra-fast, deterministic, highly scalable and balanced parallelization strategy for the discovery of human genetic variation in clinical and population-scale genomics
.
Genome Biol
.
2015
;
16
(
1
):
6
.
37.
Cingolani
P
,
Platts
A
,
Wang
LL
, et al
.
A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3
.
Fly (Austin)
.
2012
;
6
(
2
):
80
-
92
.
38.
Rosario
M
,
Liu
B
,
Kong
L
, et al
.
The IL-15-based ALT-803 complex enhances FcγRIIIa-triggered NK cell responses and in vivo clearance of B cell lymphomas
.
Clin Cancer Res
.
2016
;
22
(
3
):
596
-
608
.
39.
Vakulskas
CA
,
Dever
DP
,
Rettig
GR
, et al
.
A high-fidelity Cas9 mutant delivered as a ribonucleoprotein complex enables efficient gene editing in human hematopoietic stem and progenitor cells
.
Nat Med
.
2018
;
24
(
8
):
1216
-
1224
.
40.
van de Donk
NWCJ
,
Usmani
SZ
.
CD38 antibodies in multiple myeloma: Mechanisms of action and modes of resistance
.
Front Immunol
.
2018
;
9
:
2134
.
41.
Saltarella
I
,
Desantis
V
,
Melaccio
A
, et al
.
Mechanisms of resistance to anti-CD38 daratumumab in multiple myeloma
.
Cells
.
2020
;
9
(
1
):
167
.
42.
Chatterjee
S
,
Daenthanasanmak
A
,
Chakraborty
P
, et al
.
CD38-NAD + axis regulates immunotherapeutic anti-tumor T cell response
.
Cell Metab
.
2018
;
27
(
1
):
85
-
100.e108
.
43.
O’Brien
KL
,
Finlay
DK
.
Immunometabolism and natural killer cell responses
.
Nat Rev Immunol
.
2019
;
19
(
5
):
282
-
290
.
44.
Abdallah
N
,
Kumar
SK
.
Daratumumab in untreated newly diagnosed multiple myeloma
.
Ther Adv Hematol
.
2019
;
10
:
2040620719894871
.
45.
de Haart
SJ
,
Holthof
L
,
Noort
WA
, et al
.
Sepantronium bromide (YM155) improves daratumumab-mediated cellular lysis of multiple myeloma cells by abrogation of bone marrow stromal cell-induced resistance
.
Haematologica
.
2016
;
101
(
8
):
e339
-
e342
.
46.
Leung-Hagesteijn
C
,
Erdmann
N
,
Cheung
G
, et al
.
Xbp1s-negative tumor B cells and pre-plasmablasts mediate therapeutic proteasome inhibitor resistance in multiple myeloma
.
Cancer Cell
.
2013
;
24
(
3
):
289
-
304
.
47.
Leone
RD
,
Emens
LA
.
Targeting adenosine for cancer immunotherapy
.
J Immunother Cancer
.
2018
;
6
(
1
):
57
.
48.
Li
A
,
He
M
,
Wang
H
, et al
.
All-trans retinoic acid negatively regulates cytotoxic activities of nature killer cell line 92
.
Biochem Biophys Res Commun
.
2007
;
352
(
1
):
42
-
47
.
49.
Sanchez-Martínez
D
,
Krzywinska
E
,
Rathore
MG
, et al
.
All-trans retinoic acid (ATRA) induces miR-23a expression, decreases CTSC expression and granzyme B activity leading to impaired NK cell cytotoxicity
.
Int J Biochem Cell Biol
.
2014
;
49
:
42
-
52
.
50.
Maloney
DG
,
Grillo-López
AJ
,
White
CA
, et al
.
IDEC-C2B8 (Rituximab) anti-CD20 monoclonal antibody therapy in patients with relapsed low-grade non-Hodgkin’s lymphoma
.
Blood
.
1997
;
90
(
6
):
2188
-
2195
.
51.
Zent
CS
,
Secreto
CR
,
LaPlant
BR
, et al
.
Direct and complement dependent cytotoxicity in CLL cells from patients with high-risk early-intermediate stage chronic lymphocytic leukemia (CLL) treated with alemtuzumab and rituximab
.
Leuk Res
.
2008
;
32
(
12
):
1849
-
1856
.
52.
de Weers
M
,
Tai
YT
,
van der Veer
MS
, et al
.
Daratumumab, a novel therapeutic human CD38 monoclonal antibody, induces killing of multiple myeloma and other hematological tumors
.
J Immunol
.
2011
;
186
(
3
):
1840
-
1848
.
53.
Di Gaetano
N
,
Cittera
E
,
Nota
R
, et al
.
Complement activation determines the therapeutic activity of rituximab in vivo
.
J Immunol
.
2003
;
171
(
3
):
1581
-
1587
.
54.
Minard-Colin
V
,
Xiu
Y
,
Poe
JC
, et al
.
Lymphoma depletion during CD20 immunotherapy in mice is mediated by macrophage FcgammaRI, FcgammaRIII, and FcgammaRIV
.
Blood
.
2008
;
112
(
4
):
1205
-
1213
.
55.
Hu
Y
,
Turner
MJ
,
Shields
J
, et al
.
Investigation of the mechanism of action of alemtuzumab in a human CD52 transgenic mouse model
.
Immunology
.
2009
;
128
(
2
):
260
-
270
.
56.
Meyer
S
,
Leusen
JH
,
Boross
P
.
Regulation of complement and modulation of its activity in monoclonal antibody therapy of cancer
.
MAbs
.
2014
;
6
(
5
):
1133
-
1144
.
57.
Clemens
PL
,
Yan
X
,
Lokhorst
HM
, et al
.
Pharmacokinetics of daratumumab following intravenous infusion in relapsed or refractory multiple myeloma after prior proteasome inhibitor and immunomodulatory drug treatment
.
Clin Pharmacokinet
.
2017
;
56
(
8
):
915
-
924
.
58.
Xu
XS
,
Dimopoulos
MA
,
Sonneveld
P
, et al
.
Pharmacokinetics and exposure-response analyses of daratumumab in combination therapy regimens for patients with multiple myeloma
.
Adv Ther
.
2018
;
35
(
11
):
1859
-
1872
.
59.
Stevison
F
,
Jing
J
,
Tripathy
S
,
Isoherranen
N
.
Role of retinoic acid-metabolizing cytochrome P450s, CYP26, in inflammation and cancer
.
Adv Pharmacol
.
2015
;
74
:
373
-
412
.
60.
Hernandez
D
,
Palau
L
,
Norsworthy
K
, et al
.
Overcoming microenvironment-mediated protection from ATRA using CYP26-resistant retinoids [published online ahead of print 9 March 2020]
.
Leukemia
.
doi:10.1038/s41375-020-0790-4
.
61.
Nijhof
IS
,
Lammerts van Bueren
JJ
,
van Kessel
B
, et al
.
Daratumumab-mediated lysis of primary multiple myeloma cells is enhanced in combination with the human anti-KIR antibody IPH2102 and lenalidomide
.
Haematologica
.
2015
;
100
(
2
):
263
-
268
.
62.
Ciurea
SO
,
Schafer
JR
,
Bassett
R
, et al
.
Phase 1 clinical trial using mbIL21 ex vivo-expanded donor-derived NK cells after haploidentical transplantation
.
Blood
.
2017
;
130
(
16
):
1857
-
1868
.
63.
Naik
J
,
Themeli
M
,
de Jong-Korlaar
R
, et al
.
CD38 as a therapeutic target for adult acute myeloid leukemia and T-cell acute lymphoblastic leukemia
.
Haematologica
.
2019
;
104
(
3
):
e100
-
e103
.
64.
Guo
Y
,
Feng
K
,
Tong
C
, et al
.
Efficiency and side effects of anti-CD38 CAR T cells in an adult patient with relapsed B-ALL after failure of bi-specific CD19/CD22 CAR T cell treatment
.
Cell Mol Immunol
.
2020
;
17
(
4
):
430
-
432
.
65.
Bride
KL
,
Vincent
TL
,
Im
SY
, et al
.
Preclinical efficacy of daratumumab in T-cell acute lymphoblastic leukemia
.
Blood
.
2018
;
131
(
9
):
995
-
999
.
66.
Hari
P
,
Raj
RV
,
Olteanu
H
.
Targeting CD38 in refractory extranodal natural killer cell-T-cell lymphoma
.
N Engl J Med
.
2016
;
375
(
15
):
1501
-
1502
.
67.
Orlowski
RZ
,
Moreau
P
,
Niesvizky
R
, et al
.
Carfilzomib-dexamethasone versus bortezomib-dexamethasone in relapsed or refractory multiple myeloma: Updated overall survival, safety, and subgroups
.
Clin Lymphoma Myeloma Leuk
.
2019
;
19
(
8
):
522
-
530.e1
.
68.
Gao
Z
,
Tong
C
,
Wang
Y
,
Chen
D
,
Wu
Z
,
Han
W
.
Blocking CD38-driven fratricide among T cells enables effective antitumor activity by CD38-specific chimeric antigen receptor T cells
.
J Genet Genomics
.
2019
;
46
(
8
):
367
-
377
.
You do not currently have access to this content.