Key Points

  • CPI203-expanded cord blood cells retain bone marrow repopulating capacity.

  • CPI203 promotes human megakaryocyte development ex vivo.

Abstract

Although cytokine-mediated expansion of human hematopoietic stem cells (HSCs) can result in high yields of hematopoietic progenitor cells, this generally occurs at the expense of reduced bone marrow HSC repopulating ability, thereby limiting potential therapeutic applications. Because bromodomain-containing proteins (BCPs) have been demonstrated to regulate mouse HSC self-renewal and stemness, we screened small molecules targeting various BCPs as potential agents for ex vivo expansion of human HSCs. Of 10 compounds tested, only the bromodomain and extra-terminal motif inhibitor CPI203 enhanced the expansion of human cord blood HSCs without losing cell viability in vitro. The expanded cells also demonstrated improved engraftment and repopulation in serial transplantation assays. Transcriptomic and functional studies showed that the expansion of long-term repopulating HSCs was accompanied by synchronized expansion and maturation of megakaryocytes consistent with CPI203-mediated reprogramming of cord blood hematopoietic stem and progenitor cells. This approach may therefore prove beneficial for ex vivo gene editing, for enhanced platelet production, and for the improved usage of cord blood for transplantation research and therapy.

REFERENCES

REFERENCES
1.
Jones
PA
,
Issa
J-PJ
,
Baylin
S
.
Targeting the cancer epigenome for therapy
.
Nat Rev Genet
.
2016
;
17
(
10
):
630
-
641
.
2.
Chaurasia
P
,
Gajzer
DC
,
Schaniel
C
,
D’Souza
S
,
Hoffman
R
.
Epigenetic reprogramming induces the expansion of cord blood stem cells
.
J Clin Invest
.
2014
;
124
(
6
):
2378
-
2395
.
3.
Milhem
M
,
Mahmud
N
,
Lavelle
D
, et al
.
Modification of hematopoietic stem cell fate by 5aza 2’deoxycytidine and trichostatin A
.
Blood
.
2004
;
103
(
11
):
4102
-
4110
.
4.
Hua
P
,
Kronsteiner
B
,
Ashley
N
, et al
.
Molecular insights at the single cell level into the reprogramming of human hematopoietic stem cells during epigenetically modified expansion [abstract]
.
Blood
.
2017
;
130
(
suppl 1)
.
Abstract 2425
.
5.
Shi
J
,
Vakoc
CR
.
The mechanisms behind the therapeutic activity of BET bromodomain inhibition
.
Mol Cell
.
2014
;
54
(
5
):
728
-
736
.
6.
Crump
NT
,
Ballabio
E
,
Godfrey
L
, et al
.
BET inhibition disrupts transcription but retains enhancer-promoter contact
.
bioRxiv
.
2019
;
848325
.
7.
Dey
A
,
Yang
W
,
Gegonne
A
, et al
.
BRD4 directs hematopoietic stem cell development and modulates macrophage inflammatory responses
.
EMBO J
.
2019
;
38
(
7
):
e100293
.
8.
Wroblewski
M
,
Scheller-Wendorff
M
,
Udonta
F
, et al
.
BET-inhibition by JQ1 promotes proliferation and self-renewal capacity of hematopoietic stem cells
.
Haematologica
.
2018
;
103
(
6
):
939
-
948
.
9.
Hua
P
,
Kronsteiner
B
,
van der Garde
M
, et al
.
Single-cell assessment of transcriptome alterations induced by Scriptaid in early differentiated human haematopoietic progenitors during ex vivo expansion
.
Sci Rep
.
2019
;
9
(
1
):
5300
.
10.
Tarunina
M
,
Hernandez
D
,
Kronsteiner-Dobramysl
B
, et al
.
A novel high-throughput screening platform reveals an optimized cytokine formulation for human hematopoietic progenitor cell expansion
.
Stem Cells Dev
.
2016
;
25
(
22
):
1709
-
1720
.
11.
Gullo
F
,
van der Garde
M
,
Russo
G
, et al
.
Computational modeling of the expansion of human cord blood CD133+ hematopoietic stem/progenitor cells with different cytokine combinations
.
Bioinformatics
.
2015
;
31
(
15
):
2514
-
2522
.
12.
Notta
F
,
Doulatov
S
,
Laurenti
E
,
Poeppl
A
,
Jurisica
I
,
Dick
JE
.
Isolation of single human hematopoietic stem cells capable of long-term multilineage engraftment
.
Science
.
2011
;
333
(
6039
):
218
-
221
.
13.
Hua
P
,
Roy
N
,
de la Fuente
J
, et al
.
Single-cell analysis of bone marrow-derived CD34+ cells from children with sickle cell disease and thalassemia
.
Blood
.
2019
;
134
(
23
):
2111
-
2115
.
14.
Nie
Y
,
Han
Y-C
,
Zou
Y-R
.
CXCR4 is required for the quiescence of primitive hematopoietic cells
.
J Exp Med
.
2008
;
205
(
4
):
777
-
783
.
15.
Sugiyama
T
,
Kohara
H
,
Noda
M
,
Nagasawa
T
.
Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches
.
Immunity
.
2006
;
25
(
6
):
977
-
988
.
16.
Corces
MR
,
Buenrostro
JD
,
Wu
B
, et al
.
Lineage-specific and single-cell chromatin accessibility charts human hematopoiesis and leukemia evolution
.
Nat Genet
.
2016
;
48
(
10
):
1193
-
1203
.
17.
Wang
JF
,
Liu
ZY
,
Groopman
JE
.
The alpha-chemokine receptor CXCR4 is expressed on the megakaryocytic lineage from progenitor to platelets and modulates migration and adhesion
.
Blood
.
1998
;
92
(
3
):
756
-
764
.
18.
Psaila
B
,
Wang
G
,
Meira
AR
, et al
.
Single-cell analyses reveal aberrant pathways for megakaryocyte-biased hematopoiesis in myelofibrosis and identify mutant clone-specific targets
.
bioRxiv
.
2019
;
642819
.
19.
Psaila
B
,
Barkas
N
,
Iskander
D
, et al
.
Single-cell profiling of human megakaryocyte-erythroid progenitors identifies distinct megakaryocyte and erythroid differentiation pathways
.
Genome Biol
.
2016
;
17
(
1
):
83
.
20.
Elagib
KE
,
Lu
CH
,
Mosoyan
G
, et al
.
Neonatal expression of RNA-binding protein IGF2BP3 regulates the human fetal-adult megakaryocyte transition
.
J Clin Invest
.
2017
;
127
(
6
):
2365
-
2377
.
21.
Tajer
P
,
Pike-Overzet
K
,
Arias
S
,
Havenga
M
,
Staal
FJT
.
Ex vivo expansion of hematopoietic stem cells for therapeutic purposes: lessons from development and the niche
.
Cells
.
2019
;
8
(
2
):
E169
.
You do not currently have access to this content.