Abstract

Fetal hemoglobin (HbF) can blunt the pathophysiology, temper the clinical course, and offer prospects for curative therapy of sickle cell disease. This review focuses on (1) HbF quantitative trait loci and the geography of β-globin gene haplotypes, especially those found in the Middle East; (2) how HbF might differentially impact the pathophysiology and many subphenotypes of sickle cell disease; (3) clinical implications of person-to-person variation in the distribution of HbF among HbF-containing erythrocytes; and (4) reactivation of HbF gene expression using both pharmacologic and cell-based therapeutic approaches. A confluence of detailed understanding of the molecular basis of HbF gene expression, coupled with the ability to precisely target by genomic editing most areas of the genome, is producing important preliminary therapeutic results that could provide new options for cell-based therapeutics with curative intent.

REFERENCES

REFERENCES
1.
Piel
FB
,
Steinberg
MH
,
Rees
DC
.
Sickle cell disease
.
N Engl J Med
.
2017
;
376
(
16
):
1561
-
1573
.
2.
Eaton
WA
,
Hofrichter
J
.
Hemoglobin S gelation and sickle cell disease
.
Blood
.
1987
;
70
(
5
):
1245
-
1266
.
3.
Henry
ER
,
Cellmer
T
,
Dunkelberger
EB
, et al
.
Allosteric control of hemoglobin S fiber formation by oxygen and its relation to the pathophysiology of sickle cell disease
.
Proc Natl Acad Sci USA
.
2020
;
117
(
26
):
15018
-
15027
.
4.
Akinsheye
I
,
Alsultan
A
,
Solovieff
N
, et al
.
Fetal hemoglobin in sickle cell anemia
.
Blood
.
2011
;
118
(
1
):
19
-
27
.
5.
Eaton
WA
,
Bunn
HF
.
Treating sickle cell disease by targeting HbS polymerization
.
Blood
.
2017
;
129
(
20
):
2719
-
2726
.
6.
Ikawa
Y
,
Miccio
A
,
Magrin
E
,
Kwiatkowski
JL
,
Rivella
S
,
Cavazzana
M
.
Gene therapy of hemoglobinopathies: progress and future challenges
.
Hum Mol Genet
.
2019
;
28
(
R1
):
R24
-
R30
.
7.
Vinjamur
DS
,
Bauer
DE
,
Orkin
SH
.
Recent progress in understanding and manipulating haemoglobin switching for the haemoglobinopathies
.
Br J Haematol
.
2018
;
180
(
5
):
630
-
643
.
8.
Blobel
GA
,
Bodine
D
,
Brand
M
, et al
.
An international effort to cure a global health problem: A report on the 19th Hemoglobin Switching Conference
.
Exp Hematol
.
2015
;
43
(
10
):
821
-
837
.
9.
Menzel
S
,
Thein
SL
.
Genetic modifiers of fetal haemoglobin in sickle cell disease
.
Mol Diagn Ther
.
2019
;
23
(
2
):
235
-
244
.
10.
Orkin
SH
,
Bauer
DE
.
Emerging genetic therapy for sickle cell disease
.
Annu Rev Med
.
2019
;
70
(
1
):
257
-
271
.
11.
Lettre
G
,
Bauer
DE
.
Fetal haemoglobin in sickle-cell disease: from genetic epidemiology to new therapeutic strategies
.
Lancet
.
2016
;
387
(
10037
):
2554
-
2564
.
12.
Wienert
B
,
Martyn
GE
,
Funnell
APW
,
Quinlan
KGR
,
Crossley
M
.
Wake-up sleepy gene: reactivating fetal globin for beta-hemoglobinopathies
.
Trends Genet
.
2018
;
34
(
12
):
927
-
940
.
13.
Lee
YT
,
de Vasconcellos
JF
,
Yuan
J
, et al
.
LIN28B-mediated expression of fetal hemoglobin and production of fetal-like erythrocytes from adult human erythroblasts ex vivo
.
Blood
.
2013
;
122
(
6
):
1034
-
1041
.
14.
Menzel
S
,
Garner
C
,
Gut
I
, et al
.
A QTL influencing F cell production maps to a gene encoding a zinc-finger protein on chromosome 2p15
.
Nat Genet
.
2007
;
39
(
10
):
1197
-
1199
.
15.
Sedgewick
AE
,
Timofeev
N
,
Sebastiani
P
, et al
.
BCL11A is a major HbF quantitative trait locus in three different populations with β-hemoglobinopathies
.
Blood Cells Mol Dis
.
2008
;
41
(
3
):
255
-
258
.
16.
Uda
M
,
Galanello
R
,
Sanna
S
, et al
.
Genome-wide association study shows BCL11A associated with persistent fetal hemoglobin and amelioration of the phenotype of beta-thalassemia
.
Proc Natl Acad Sci USA
.
2008
;
105
(
5
):
1620
-
1625
.
17.
Sankaran
VG
,
Menne
TF
,
Xu
J
, et al
.
Human fetal hemoglobin expression is regulated by the developmental stage-specific repressor BCL11A
.
Science
.
2008
;
322
(
5909
):
1839
-
1842
.
18.
Xu
J
,
Peng
C
,
Sankaran
VG
, et al
.
Correction of sickle cell disease in adult mice by interference with fetal hemoglobin silencing
.
Science
.
2011
;
334
(
6058
):
993
-
996
.
19.
Bauer
DE
,
Kamran
SC
,
Lessard
S
, et al
.
An erythroid enhancer of BCL11A subject to genetic variation determines fetal hemoglobin level
.
Science
.
2013
;
342
(
6155
):
253
-
257
.
20.
Liu
N
,
Hargreaves
VV
,
Zhu
Q
, et al
.
Direct promoter repression by BCL11A controls the fetal to adult hemoglobin switch
.
Cell
.
2018
;
173
(
2
):
430
-
442.e17
.
21.
Martyn
GE
,
Wienert
B
,
Yang
L
, et al
.
Natural regulatory mutations elevate the fetal globin gene via disruption of BCL11A or ZBTB7A binding
.
Nat Genet
.
2018
;
50
(
4
):
498
-
503
.
22.
Basak
A
,
Munschauer
M
,
Lareau
CA
, et al
.
Control of human hemoglobin switching by LIN28B-mediated regulation of BCL11A translation
.
Nat Genet
.
2020
;
52
(
2
):
138
-
145
.
23.
Lessard
S
,
Beaudoin
M
,
Orkin
SH
,
Bauer
DE
,
Lettre
G
.
14q32 and let-7 microRNAs regulate transcriptional networks in fetal and adult human erythroblasts
.
Hum Mol Genet
.
2018
;
27
(
8
):
1411
-
1420
.
24.
Huang
P
,
Keller
CA
,
Giardine
B
, et al
.
Comparative analysis of three-dimensional chromosomal architecture identifies a novel fetal hemoglobin regulatory element
.
Genes Dev
.
2017
;
31
(
16
):
1704
-
1713
.
25.
Masuda
T
,
Wang
X
,
Maeda
M
, et al
.
Transcription factors LRF and BCL11A independently repress expression of fetal hemoglobin
.
Science
.
2016
;
351
(
6270
):
285
-
289
.
26.
Shaikho
EM
,
Habara
AH
,
Alsultan
A
, et al
.
Variants of ZBTB7A (LRF) and its β-globin gene cluster binding motifs in sickle cell anemia
.
Blood Cells Mol Dis
.
2016
;
59
:
49
-
51
.
27.
Weber
L
,
Frati
G
,
Felix
T
, et al
.
Editing a γ-globin repressor binding site restores fetal hemoglobin synthesis and corrects the sickle cell disease phenotype
.
Sci Adv
.
2020
;
6
:
eaay9392
.
28.
Norton
LJ
,
Funnell
APW
,
Burdach
J
, et al
.
KLF1 directly activates expression of the novel fetal globin repressor ZBTB7A/LRF in erythroid cells
.
Blood Adv
.
2017
;
1
(
11
):
685
-
692
.
29.
Bieker
JJ
.
Putting a finger on the switch
.
Nat Genet
.
2010
;
42
(
9
):
733
-
734
.
30.
Shaikho
EM
,
Farrell
JJ
,
Chui
DHK
,
Sebastiani
P
,
Steinberg
MH
.
Cis- and trans-acting expression quantitative trait loci differentially regulate gamma-globin gene expression
.
bioRxiv
.
2018
.
10.1101/304899
31.
Gardner
K
,
Fulford
T
,
Silver
N
, et al
.
g(HbF): a genetic model of fetal hemoglobin in sickle cell disease
.
Blood Adv
.
2018
;
2
(
3
):
235
-
239
.
32.
Shriner
D
,
Rotimi
CN
.
Whole-genome-sequence-based haplotypes reveal single origin of the sickle allele during the Holocene wet phase
.
Am J Hum Genet
.
2018
;
102
(
4
):
547
-
556
.
33.
Laval
G
,
Peyrégne
S
,
Zidane
N
, et al
.
Recent adaptive acquisition by African rainforest hunter-gatherers of the late Pleistocene sickle-cell mutation suggests past differences in malaria exposure
.
Am J Hum Genet
.
2019
;
104
(
3
):
553
-
561
.
34.
Nagel
RL
,
Steinberg
MH
. Genetics of the βs gene: origins, genetic epidemiology, and epistasis in sickle cell anemia. In:
Steinberg
M
,
Forget
BG
,
Higgs
DR
,
Nagel
RL
, eds.
Disorders of Hemoglobin: Genetics, Pathophysiology, Clinical Management
,
Cambridge, United Kingdom
:
Cambridge University Press
;
2001
:
711
-
755
.
35.
Al-Ali
AK
,
Alsulaiman
A
,
Alzahrani
AJ
, et al
.
Prevalence and diversity of haplotypes of sickle cell disease in the Eastern Province of Saudi Arabia
.
Hemoglobin
.
2020
;
44
(
2
):
78
-
81
.
36.
Alsultan
A
,
Solovieff
N
,
Aleem
A
, et al
.
Fetal hemoglobin in sickle cell anemia: Saudi patients from the Southwestern province have similar HBB haplotypes but higher HbF levels than African Americans
.
Am J Hematol
.
2011
;
86
(
7
):
612
-
614
.
37.
Perrine
RP
,
Brown
MJ
,
Clegg
JB
,
Weatherall
DJ
,
May
A
.
Benign sickle-cell anaemia
.
Lancet
.
1972
;
2
(
7788
):
1163
-
1167
.
38.
Alsultan
A
,
Alabdulaali
MK
,
Griffin
PJ
, et al
.
Sickle cell disease in Saudi Arabia: the phenotype in adults with the Arab-Indian haplotype is not benign
.
Br J Haematol
.
2014
;
164
(
4
):
597
-
604
.
39.
Sebastiani
P
,
Farrell
JJ
,
Alsultan
A
, et al
.
BCL11A enhancer haplotypes and fetal hemoglobin in sickle cell anemia
.
Blood Cells Mol Dis
.
2015
;
54
(
3
):
224
-
230
.
40.
Vathipadiekal
V
,
Alsultan
A
,
Baltrusaitis
K
, et al
.
Homozygosity for a haplotype in the HBG2-OR51B4 region is exclusive to Arab-Indian haplotype sickle cell anemia
.
Am J Hematol
.
2016
;
91
(
6
):
E308
-
E311
.
41.
Vathipadiekal
V
,
Farrell
JJ
,
Wang
S
, et al
.
A candidate transacting modulator of fetal hemoglobin gene expression in the Arab-Indian haplotype of sickle cell anemia
.
Am J Hematol
.
2016
;
91
(
11
):
1118
-
1122
.
42.
Al-Ali
ZA
,
Fallatah
RK
,
Aljaffer
EA
, et al
.
ANTXR1 intronic variants are associated with fetal hemoglobin in the Arab-Indian haplotype of sickle cell disease
.
Acta Haematol
.
2018
;
140
(
1
):
55
-
59
.
43.
Khandros
E
,
Huang
P
,
Peslak
SA
, et al
.
Understanding heterogeneity of fetal hemoglobin induction through comparative analysis of F and A-erythroblasts
.
Blood
.
2020
;
135
(
22
):
1957
-
1968
.
44.
Bertles
JF
,
Milner
PF
.
Irreversibly sickled erythrocytes: a consequence of the heterogeneous distribution of hemoglobin types in sickle-cell anemia
.
J Clin Invest
.
1968
;
47
(
8
):
1731
-
1741
.
45.
Dover
GJ
,
Boyer
SH
,
Charache
S
,
Heintzelman
K
.
Individual variation in the production and survival of F cells in sickle-cell disease
.
N Engl J Med
.
1978
;
299
(
26
):
1428
-
1435
.
46.
Horiuchi
K
,
Osterhout
ML
,
Ohene-Frempong
K
.
Survival of F-reticulocytes in sickle cell disease
.
Biochem Biophys Res Commun
.
1995
;
217
(
3
):
924
-
930
.
47.
Franco
RS
,
Yasin
Z
,
Palascak
MB
,
Ciraolo
P
,
Joiner
CH
,
Rucknagel
DL
.
The effect of fetal hemoglobin on the survival characteristics of sickle cells
.
Blood
.
2006
;
108
(
3
):
1073
-
1076
.
48.
Maier-Redelsperger
M
,
Noguchi
CT
,
de Montalembert
M
, et al
.
Variation in fetal hemoglobin parameters and predicted hemoglobin S polymerization in sickle cell children in the first two years of life: Parisian Prospective Study on Sickle Cell Disease
.
Blood
.
1994
;
84
(
9
):
3182
-
3188
.
49.
Horiuchi
K
,
Osterhout
ML
,
Kamma
H
,
Bekoe
NA
,
Hirokawa
KJ
.
Estimation of fetal hemoglobin levels in individual red cells via fluorescence image cytometry
.
Cytometry
.
1995
;
20
(
3
):
261
-
267
.
50.
Ngo
DA
,
Aygun
B
,
Akinsheye
I
, et al
.
Fetal haemoglobin levels and haematological characteristics of compound heterozygotes for haemoglobin S and deletional hereditary persistence of fetal haemoglobin
.
Br J Haematol
.
2012
;
156
(
2
):
259
-
264
.
51.
Brittenham
GM
,
Schechter
AN
,
Noguchi
CT
.
Hemoglobin S polymerization: primary determinant of the hemolytic and clinical severity of the sickling syndromes
.
Blood
.
1985
;
65
(
1
):
183
-
189
.
52.
Steinberg
MH
,
Chui
DH
,
Dover
GJ
,
Sebastiani
P
,
Alsultan
A
.
Fetal hemoglobin in sickle cell anemia: a glass half full?
Blood
.
2014
;
123
(
4
):
481
-
485
.
53.
Perrine
RP
,
Pembrey
ME
,
John
P
,
Perrine
S
,
Shoup
F
.
Natural history of sickle cell anemia in Saudi Arabs. A study of 270 subjects
.
Ann Intern Med
.
1978
;
88
(
1
):
1
-
6
.
54.
Perrine
RP
,
John
P
,
Pembrey
M
,
Perrine
S
.
Sickle cell disease in Saudi Arabs in early childhood
.
Arch Dis Child
.
1981
;
56
(
3
):
187
-
192
.
55.
Steinberg
MH
,
Sebastiani
P
.
Genetic modifiers of sickle cell disease
.
Am J Hematol
.
2012
;
87
(
8
):
795
-
803
.
56.
Nkya
S
,
Mgaya
J
,
Urio
F
, et al
.
Fetal hemoglobin is associated with peripheral oxygen saturation in sickle cell disease in Tanzania
.
EBioMedicine
.
2017
;
23
:
146
-
149
.
57.
Kato
GJ
,
Gladwin
MT
,
Steinberg
MH
.
Deconstructing sickle cell disease: reappraisal of the role of hemolysis in the development of clinical subphenotypes
.
Blood Rev
.
2007
;
21
(
1
):
37
-
47
.
58.
Kato
GJ
,
Steinberg
MH
,
Gladwin
MT
.
Intravascular hemolysis and the pathophysiology of sickle cell disease
.
J Clin Invest
.
2017
;
127
(
3
):
750
-
760
.
59.
Reiter
CD
,
Wang
X
,
Tanus-Santos
JE
, et al
.
Cell-free hemoglobin limits nitric oxide bioavailability in sickle-cell disease
.
Nat Med
.
2002
;
8
(
12
):
1383
-
1389
.
60.
Platt
OS
,
Brambilla
DJ
,
Rosse
WF
, et al
.
Mortality in sickle cell disease. Life expectancy and risk factors for early death
.
N Engl J Med
.
1994
;
330
(
23
):
1639
-
1644
.
61.
Maitra
P
,
Caughey
M
,
Robinson
L
, et al
.
Risk factors for mortality in adult patients with sickle cell disease: a meta-analysis of studies in North America and Europe
.
Haematologica
.
2017
;
102
(
4
):
626
-
636
.
62.
Fitzhugh
CD
,
Hsieh
MM
,
Allen
D
, et al
.
Hydroxyurea-Increased fetal hemoglobin Is associated with less organ damage and longer survival in adults with sickle cell anemia
.
PLoS One
.
2015
;
10
(
11
):
e0141706
.
63.
Boulassel
M-R
,
Al-Badi
A
,
Elshinawy
M
, et al
.
Hemoglobin F as a predictor of health-related quality of life in children with sickle cell anemia
.
Qual Life Res
.
2019
;
28
(
2
):
473
-
479
.
64.
Brousse
V
,
El Hoss
S
,
Bouazza
N
, et al
.
Prognostic factors of disease severity in infants with sickle cell anemia: A comprehensive longitudinal cohort study
.
Am J Hematol
.
2018
;
93
(
11
):
1411
-
1419
.
65.
Estepp
JH
,
Smeltzer
MP
,
Kang
G
, et al
.
A clinically meaningful fetal hemoglobin threshold for children with sickle cell anemia during hydroxyurea therapy
.
Am J Hematol
.
2017
;
92
(
12
):
1333
-
1339
.
66.
Ohene-Frempong
K
,
Weiner
SJ
,
Sleeper
LA
, et al
.
Cerebrovascular accidents in sickle cell disease: rates and risk factors
.
Blood
.
1998
;
91
(
1
):
288
-
294
.
67.
Kinney
TR
,
Sleeper
LA
,
Wang
WC
, et al;
The Cooperative Study of Sickle Cell Disease
.
Silent cerebral infarcts in sickle cell anemia: a risk factor analysis
.
Pediatrics
.
1999
;
103
(
3
):
640
-
645
.
68.
van der Land
V
,
Mutsaerts
HJ
,
Engelen
M
, et al
.
Risk factor analysis of cerebral white matter hyperintensities in children with sickle cell disease
.
Br J Haematol
.
2016
;
172
(
2
):
274
-
284
.
69.
Sommet
J
,
Alberti
C
,
Couque
N
, et al
.
Clinical and haematological risk factors for cerebral macrovasculopathy in a sickle cell disease newborn cohort: a prospective study
.
Br J Haematol
.
2016
;
172
(
6
):
966
-
977
.
70.
Calvet
D
,
Tuilier
T
,
Mélé
N
, et al
.
Low fetal hemoglobin percentage is associated with silent brain lesions in adults with homozygous sickle cell disease
.
Blood Adv
.
2017
;
1
(
26
):
2503
-
2509
.
71.
Mmbando
BP
,
Mgaya
J
,
Cox
SE
, et al
.
Negative epistasis between sickle and foetal haemoglobin suggests a reduction in protection against malaria
.
PLoS One
.
2015
;
10
(
5
):
e0125929
.
72.
Purohit
P
,
Patel
S
,
Mohanty
PK
,
Das
P
,
Panigrahi
J
.
Fetal hemoglobin modifies the disease manifestation of severe Plasmodium Falciparum malaria in adult patients with sickle cell anemia
.
Mediterr J Hematol Infect Dis
.
2016
;
8
(
1
):
e2016055
.
73.
Tshilolo
L
,
Tomlinson
G
,
Williams
TN
, et al;
REACH Investigators
.
Hydroxyurea for children with sickle cell anemia in Sub-Saharan Africa
.
N Engl J Med
.
2019
;
380
(
2
):
121
-
131
.
74.
Manning
JM
,
Manning
LR
,
Dumoulin
A
,
Padovan
JC
,
Chait
B
.
Embryonic and fetal human hemoglobins: structures, oxygen binding, and physiological roles
.
Subcell Biochem
.
2020
;
94
:
275
-
296
.
75.
Summarell
CC
,
Sheehan
VA
.
Original Research: Use of hydroxyurea and phlebotomy in pediatric patients with hemoglobin SC disease
.
Exp Biol Med (Maywood)
.
2016
;
241
(
7
):
737
-
744
.
76.
Luchtman-Jones
L
,
Pressel
S
,
Hilliard
L
, et al
.
Effects of hydroxyurea treatment for patients with hemoglobin SC disease
.
Am J Hematol
.
2016
;
91
(
2
):
238
-
242
.
77.
Di Maggio
R
,
Hsieh
MM
,
Zhao
X
, et al
.
Chronic administration of hydroxyurea (HU) benefits caucasian patients with sickle-beta thalassemia
.
Int J Mol Sci
.
2018
;
19
(
3
):
E681
.
78.
Voskaridou
E
,
Christoulas
D
,
Bilalis
A
, et al
.
The effect of prolonged administration of hydroxyurea on morbidity and mortality in adult patients with sickle cell syndromes: results of a 17-year, single-center trial (LaSHS)
.
Blood
.
2010
;
115
(
12
):
2354
-
2363
.
79.
Deshpande
SV
,
Bhatwadekar
SS
,
Desai
P
, et al
.
Hydroxyurea in sickle cell disease: our experience in Western India
.
Indian J Hematol Blood Transfus
.
2016
;
32
(
2
):
215
-
220
.
80.
John
CC
,
Opoka
RO
,
Latham
TS
, et al
.
Hydroxyurea dose escalation for sickle cell anemia in Sub-Saharan Africa
.
N Engl J Med
.
2020
;
382
(
26
):
2524
-
2533
.
81.
Charache
S
,
Terrin
ML
,
Moore
RD
, et al;
Investigators of the Multicenter Study of Hydroxyurea in Sickle Cell Anemia
.
Effect of hydroxyurea on the frequency of painful crises in sickle cell anemia
.
N Engl J Med
.
1995
;
332
(
20
):
1317
-
1322
.
82.
Steinberg
MH
,
McCarthy
WF
,
Castro
O
, et al;
Investigators of the Multicenter Study of Hydroxyurea in Sickle Cell Anemia and MSH Patients’ Follow-Up
.
The risks and benefits of long-term use of hydroxyurea in sickle cell anemia: a 17.5 year follow-up
.
Am J Hematol
.
2010
;
85
(
6
):
403
-
408
.
83.
Bridges
KR
,
Barabino
GD
,
Brugnara
C
, et al
.
A multiparameter analysis of sickle erythrocytes in patients undergoing hydroxyurea therapy
.
Blood
.
1996
;
88
(
12
):
4701
-
4710
.
84.
Hayes
RJ
,
Beckford
M
,
Grandison
Y
,
Mason
K
,
Serjeant
BE
,
Serjeant
GR
.
The haematology of steady state homozygous sickle cell disease: frequency distributions, variation with age and sex, longitudinal observations
.
Br J Haematol
.
1985
;
59
(
2
):
369
-
382
.
85.
West
MS
,
Wethers
D
,
Smith
J
,
Steinberg
M
;
The Cooperative Study of Sickle Cell Disease
.
Laboratory profile of sickle cell disease: a cross-sectional analysis
.
J Clin Epidemiol
.
1992
;
45
(
8
):
893
-
909
.
86.
Steinberg
MH
,
Lu
ZH
,
Barton
FB
,
Terrin
ML
,
Charache
S
,
Dover
GJ
;
Multicenter Study of Hydroxyurea
.
Fetal hemoglobin in sickle cell anemia: determinants of response to hydroxyurea
.
Blood
.
1997
;
89
(
3
):
1078
-
1088
.
87.
Wang
WC
,
Ware
RE
,
Miller
ST
, et al;
BABY HUG investigators
.
Hydroxycarbamide in very young children with sickle-cell anaemia: a multicentre, randomised, controlled trial (BABY HUG)
.
Lancet
.
2011
;
377
(
9778
):
1663
-
1672
.
88.
Hankins
JS
,
Aygun
B
,
Nottage
K
, et al
.
From infancy to adolescence: fifteen years of continuous treatment with hydroxyurea in sickle cell anemia
.
Medicine (Baltimore)
.
2014
;
93
(
28
):
e215
.
89.
McGann
PT
,
Niss
O
,
Dong
M
, et al
.
Robust clinical and laboratory response to hydroxyurea using pharmacokinetically guided dosing for young children with sickle cell anemia
.
Am J Hematol
.
2019
;
94
(
8
):
871
-
879
.
90.
Ware
RE
,
Davis
BR
,
Schultz
WH
, et al
.
Hydroxycarbamide versus chronic transfusion for maintenance of transcranial doppler flow velocities in children with sickle cell anaemia-TCD With Transfusions Changing to Hydroxyurea (TWiTCH): a multicentre, open-label, phase 3, non-inferiority trial
.
Lancet
.
2016
;
387
(
10019
):
661
-
670
.
91.
Zhang
Y
,
Paikari
A
,
Sumazin
P
, et al
.
Metformin induces FOXO3-dependent fetal hemoglobin production in human primary erythroid cells
.
Blood
.
2018
;
132
(
3
):
321
-
333
.
92.
Han
J
,
Saraf
SL
,
Molokie
RE
,
Gordeuk
VR
.
Use of metformin in patients with sickle cell disease
.
Am J Hematol
.
2018
;
94
(
1
):
E15
-
E17
.
93.
Badawy
SM
,
Payne
AB
.
Association between clinical outcomes and metformin use in adults with sickle cell disease and diabetes mellitus
.
Blood Adv
.
2019
;
3
(
21
):
3297
-
3306
.
94.
Moutouh-de Parseval
LA
,
Verhelle
D
,
Glezer
E
, et al
.
Pomalidomide and lenalidomide regulate erythropoiesis and fetal hemoglobin production in human CD34+ cells
.
J Clin Invest
.
2008
;
118
(
1
):
248
-
258
.
95.
Dulmovits
BM
,
Appiah-Kubi
AO
,
Papoin
J
, et al
.
Pomalidomide reverses γ-globin silencing through the transcriptional reprogramming of adult hematopoietic progenitors
.
Blood
.
2016
;
127
(
11
):
1481
-
1492
.
96.
Shi
L
,
Cui
S
,
Engel
JD
,
Tanabe
O
.
Lysine-specific demethylase 1 is a therapeutic target for fetal hemoglobin induction
.
Nat Med
.
2013
;
19
(
3
):
291
-
294
.
97.
Cui
S
,
Lim
KC
,
Shi
L
, et al
.
The LSD1 inhibitor RN-1 induces fetal hemoglobin synthesis and reduces disease pathology in sickle cell mice
.
Blood
.
2015
;
126
(
3
):
386
-
396
.
98.
Le
CQ
,
Myers
G
,
Habara
A
, et al
.
Inhibition of LSD1 by small molecule inhibitors stimulates fetal hemoglobin synthesis
.
Blood
.
2019
;
133
(
22
):
2455
-
2459
.
99.
Rivers
A
,
Vaitkus
K
,
Ibanez
V
, et al
.
The LSD1 inhibitor RN-1 recapitulates the fetal pattern of hemoglobin synthesis in baboons (P. anubis)
.
Haematologica
.
2016
;
101
(
6
):
688
-
697
.
100.
Renneville
A
,
Van Galen
P
,
Canver
MC
, et al
.
EHMT1 and EHMT2 inhibition induces fetal hemoglobin expression
.
Blood
.
2015
;
126
(
16
):
1930
-
1939
.
101.
Molokie
R
,
Lavelle
D
,
Gowhari
M
, et al
.
Oral tetrahydrouridine and decitabine for non-cytotoxic epigenetic gene regulation in sickle cell disease: A randomized phase 1 study
.
PLoS Med
.
2017
;
14
(
9
):
e1002382
.
102.
McArthur
JG
,
Svenstrup
N
,
Chen
C
, et al
.
A novel, highly potent and selective phosphodiesterase-9 inhibitor for the treatment of sickle cell disease
.
Haematologica
.
2020
;
105
(
3
):
623
-
631
.
103.
Charnigo
RJ
,
Beidler
D
,
Rybin
D
, et al
.
PF‐04447943, a phosphodiesterase 9A inhibitor, in stable sickle cell disease patients: A phase Ib randomized, placebo‐controlled study
.
Clin Transl Sci
.
2019
;
12
(
2
):
180
-
188
.
104.
Chambers
CB
,
Gross
J
,
Pratt
K
, et al
.
The mRNA-binding protein IGF2BP1 restores fetal hemoglobin in cultured erythroid cells from patients with β-hemoglobin disorders
.
Mol Ther Methods Clin Dev
.
2020
;
17
:
429
-
440
.
105.
Breda
L
,
Motta
I
,
Lourenco
S
, et al
.
Forced chromatin looping raises fetal hemoglobin in adult sickle cells to higher levels than pharmacologic inducers
.
Blood
.
2016
;
128
(
8
):
1139
-
1143
.
106.
Deng
W
,
Rupon
JW
,
Krivega
I
, et al
.
Reactivation of developmentally silenced globin genes by forced chromatin looping
.
Cell
.
2014
;
158
(
4
):
849
-
860
.
107.
Krishnamoorthy
S
,
Pace
B
,
Gupta
D
, et al
.
Dimethyl fumarate increases fetal hemoglobin, provides heme detoxification, and corrects anemia in sickle cell disease
.
JCI Insight
.
2017
;
2
(
20
):
96409
.
108.
Dai
Y
,
Shaikho
EM
,
Perez
J
, et al
.
BCL2L1 is associated with γ-globin gene expression
.
Blood Adv
.
2019
;
3
(
20
):
2995
-
3001
.
109.
Dai
Y
,
Chen
T
,
Ijaz
H
,
Cho
EH
,
Steinberg
MH
.
SIRT1 activates the expression of fetal hemoglobin genes
.
Am J Hematol
.
2017
;
92
(
11
):
1177
-
1186
.
110.
Bosquesi
PL
,
Melchior
ACB
,
Pavan
AR
, et al
.
Synthesis and evaluation of resveratrol derivatives as fetal hemoglobin inducers
.
Bioorg Chem
.
2020
;
100
:
103948
.
111.
Huang
P
,
Peslak
SA
,
Lan
X
, et al
.
The HRI-regulated transcription factor ATF4 activates BCL11A transcription to silence fetal hemoglobin expression
.
Blood
.
2020
;
135
(
24
):
2121
-
2132
.
112.
Grevet
JD
,
Lan
X
,
Hamagami
N
, et al
.
Domain-focused CRISPR screen identifies HRI as a fetal hemoglobin regulator in human erythroid cells
.
Science
.
2018
;
361
(
6399
):
285
-
290
.
113.
Yu
X
,
Azzo
A
,
Bilinovich
SM
, et al
.
Disruption of the MBD2-NuRD complex but not MBD3-NuRD induces high level HbF expression in human adult erythroid cells
.
Haematologica
.
2019
;
104
(
12
):
2361
-
2371
.
114.
Nagel
RL
,
Bookchin
RM
,
Johnson
J
, et al
.
Structural bases of the inhibitory effects of hemoglobin F and hemoglobin A2 on the polymerization of hemoglobin S
.
Proc Natl Acad Sci USA
.
1979
;
76
(
2
):
670
-
672
.
115.
Pawliuk
R
,
Westerman
KA
,
Fabry
ME
, et al
.
Correction of sickle cell disease in transgenic mouse models by gene therapy
.
Science
.
2001
;
294
(
5550
):
2368
-
2371
.
116.
Thompson
AA
,
Walters
MC
,
Kwiatkowski
J
, et al
.
Gene therapy in patients with transfusion-dependent β-thalassemia
.
N Engl J Med
.
2018
;
378
(
16
):
1479
-
1493
.
117.
Ribeil
JA
,
Hacein-Bey-Abina
S
,
Payen
E
, et al
.
Gene therapy in a patient with sickle cell disease
.
N Engl J Med
.
2017
;
376
(
9
):
848
-
855
.
118.
Kanter
J
,
Tisdale
JF
,
Mapare
M
, et al
.
Resolution of sickle cell disease manifestations in patients treated with lentiglobin gene therapy: updates results from the phase 1/2 HGB-206 group C study
.
Blood
.
2019
;
134
(
suppl 1
):
990
.
119.
Brendel
C
,
Negre
O
,
Rothe
M
, et al
.
Preclinical evaluation of a novel lentiviral vector driving lineage-specific BCL11A knockdown for sickle cell gene therapy
.
Mol Ther Methods Clin Dev
.
2020
;
17
:
589
-
600
.
120.
Esrick
EB
,
Achebe
M
,
Armant
M
, et al
.
Validation of BCL11A as therapeutic target in sickle cell disease: results from the adult cohort of a pilot/feasibility gene therapy trial inducing sustained expression of fetal hemoglobin using post-transcriptional gene silencing
.
Blood
.
2019
;
134
(
suppl 2
):
LBA
-
5
.
121.
Doudna
JA
.
The promise and challenge of therapeutic genome editing
.
Nature
.
2020
;
578
(
7794
):
229
-
236
.
122.
Walton
RT
,
Christie
KA
,
Whittaker
MN
,
Kleinstiver
BP
.
Unconstrained genome targeting with near-PAMless engineered CRISPR-Cas9 variants
.
Science
.
2020
;
368
(
6488
):
290
-
296
.
123.
Porteus
MH
.
Genome Editing for the β-Hemoglobinopathies
.
Adv Exp Med Biol
.
2017
;
1013
:
203
-
217
.
124.
Hoban
MD
,
Orkin
SH
,
Bauer
DE
.
Genetic treatment of a molecular disorder: gene therapy approaches to sickle cell disease
.
Blood
.
2016
;
127
(
7
):
839
-
848
.
125.
Corbacioglu
S
,
Cappellini
MD
,
Chapin
J
, et al
.
Initial safety and efficacy results with a single dose of autologous crispr-cas9 modified CD34+ hematopoietic stem and progenitor cells in transfusion-dependent β-thalassemia and sickle cell disease
.
Eur Soc Haematol
.
2020
;
EHA25
:
S280
.
126.
Métais
JY
,
Doerfler
PA
,
Mayuranathan
T
, et al
.
Genome editing of HBG1 and HBG2 to induce fetal hemoglobin
.
Blood Adv
.
2019
;
3
(
21
):
3379
-
3392
.
127.
Krishnamurti
L
.
Should young children with sickle cell disease and an available human leukocyte antigen identical sibling donor be offered hematopoietic cell transplantation?
Hematol Oncol Stem Cell Ther
.
2020
;
13
(
2
):
53
-
57
.
128.
Leonard
A
,
Tisdale
J
,
Abraham
A
.
Curative options for sickle cell disease: haploidentical stem cell transplantation or gene therapy?
Br J Haematol
.
2020
;
189
(
3
):
408
-
423
.
129.
Hsieh
MM
,
Bonner
M
,
Pierciey
FJ
, et al
.
Myelodysplastic syndrome unrelated to lentiviral vector in a patient treated with gene therapy for sickle cell disease
.
Blood Adv
.
2020
;
4
(
9
):
2058
-
2063
.
130.
Gao
C
,
Schroeder
JA
,
Xue
F
, et al
.
Nongenotoxic antibody-drug conjugate conditioning enables safe and effective platelet gene therapy of hemophilia A mice
.
Blood Adv
.
2019
;
3
(
18
):
2700
-
2711
.
You do not currently have access to this content.