Key Points

  • Runx1 is required for leukemia-initiating cells in Cbfb-MYH11 mice.

  • RUNX1 recruits CBFβ-SMMHC to target genes.

Abstract

Inversion of chromosome 16 is a consistent finding in patients with acute myeloid leukemia subtype M4 with eosinophilia, which generates a CBFB-MYH11 fusion gene. It is generally considered that CBFβ-SMMHC, the fusion protein encoded by CBFB-MYH11, is a dominant negative repressor of RUNX1. However, recent findings challenge the RUNX1-repression model for CBFβ-SMMHC–mediated leukemogenesis. To definitively address the role of Runx1 in CBFB-MYH11–induced leukemia, we crossed conditional Runx1 knockout mice (Runx1f/f) with conditional Cbfb-MYH11 knockin mice (Cbfb+/56M). On Mx1-Cre activation in hematopoietic cells induced by poly (I:C) injection, all Mx1-CreCbfb+/56M mice developed leukemia in 5 months, whereas no leukemia developed in Runx1f/fMx1-CreCbfb+/56M mice, and this effect was cell autonomous. Importantly, the abnormal myeloid progenitors (AMPs), a leukemia-initiating cell population induced by Cbfb-MYH11 in the bone marrow, decreased and disappeared in Runx1f/fMx1-CreCbfb+/56M mice. RNA-seq analysis of AMP cells showed that genes associated with proliferation, differentiation blockage, and leukemia initiation were differentially expressed between Mx1-CreCbfb+/56M and Runx1f/fMx1-CreCbfb+/56M mice. In addition, with the chromatin immunocleavage sequencing assay, we observed a significant enrichment of RUNX1/CBFβ-SMMHC target genes in Runx1f/fMx1-CreCbfb+/56M cells, especially among downregulated genes, suggesting that RUNX1 and CBFβ-SMMHC mainly function together as activators of gene expression through direct target gene binding. These data indicate that Runx1 is indispensable for Cbfb-MYH11–induced leukemogenesis by working together with CBFβ-SMMHC to regulate critical genes associated with the generation of a functional AMP population.

REFERENCE

REFERENCE
1.
Le Beau
MM
,
Larson
RA
,
Bitter
MA
,
Vardiman
JW
,
Golomb
HM
,
Rowley
JD
.
Association of an inversion of chromosome 16 with abnormal marrow eosinophils in acute myelomonocytic leukemia. A unique cytogenetic-clinicopathological association
.
N Engl J Med
.
1983
;
309
(
11
):
630
-
636
.
2.
Liu
P
,
Tarle
SA
,
Hajra
A
, et al
.
Fusion between transcription factor CBF beta/PEBP2 beta and a myosin heavy chain in acute myeloid leukemia
.
Science
.
1993
;
261
(
5124
):
1041
-
1044
.
3.
Liu
PP
,
Wijmenga
C
,
Hajra
A
, et al
.
Identification of the chimeric protein product of the CBFB-MYH11 fusion gene in inv(16) leukemia cells
.
Genes Chromosomes Cancer
.
1996
;
16
(
2
):
77
-
87
.
4.
Castilla
LH
,
Garrett
L
,
Adya
N
, et al
.
The fusion gene Cbfb-MYH11 blocks myeloid differentiation and predisposes mice to acute myelomonocytic leukaemia
.
Nat Genet
.
1999
;
23
(
2
):
144
-
146
.
5.
Castilla
LH
,
Perrat
P
,
Martinez
NJ
, et al
.
Identification of genes that synergize with Cbfb-MYH11 in the pathogenesis of acute myeloid leukemia
.
Proc Natl Acad Sci USA
.
2004
;
101
(
14
):
4924
-
4929
.
6.
Chuang
LS
,
Ito
K
,
Ito
Y
.
RUNX family: Regulation and diversification of roles through interacting proteins
.
Int J Cancer
.
2013
;
132
(
6
):
1260
-
1271
.
7.
Tang
YY
,
Shi
J
,
Zhang
L
, et al
.
Energetic and functional contribution of residues in the core binding factor beta (CBFbeta) subunit to heterodimerization with CBFalpha
.
J Biol Chem
.
2000
;
275
(
50
):
39579
-
39588
.
8.
Lukasik
SM
,
Zhang
L
,
Corpora
T
, et al
.
Altered affinity of CBF beta-SMMHC for Runx1 explains its role in leukemogenesis
.
Nat Struct Biol
.
2002
;
9
(
9
):
674
-
679
.
9.
Adya
N
,
Stacy
T
,
Speck
NA
,
Liu
PP
.
The leukemic protein core binding factor beta (CBFbeta)-smooth-muscle myosin heavy chain sequesters CBFalpha2 into cytoskeletal filaments and aggregates
.
Mol Cell Biol
.
1998
;
18
(
12
):
7432
-
7443
.
10.
Durst
KL
,
Lutterbach
B
,
Kummalue
T
,
Friedman
AD
,
Hiebert
SW
.
The inv(16) fusion protein associates with corepressors via a smooth muscle myosin heavy-chain domain
.
Mol Cell Biol
.
2003
;
23
(
2
):
607
-
619
.
11.
Lutterbach
B
,
Hou
Y
,
Durst
KL
,
Hiebert
SW
.
The inv(16) encodes an acute myeloid leukemia 1 transcriptional corepressor
.
Proc Natl Acad Sci USA
.
1999
;
96
(
22
):
12822
-
12827
.
12.
Castilla
LH
,
Wijmenga
C
,
Wang
Q
, et al
.
Failure of embryonic hematopoiesis and lethal hemorrhages in mouse embryos heterozygous for a knocked-in leukemia gene CBFB-MYH11
.
Cell
.
1996
;
87
(
4
):
687
-
696
.
13.
Okuda
T
,
van Deursen
J
,
Hiebert
SW
,
Grosveld
G
,
Downing
JR
.
AML1, the target of multiple chromosomal translocations in human leukemia, is essential for normal fetal liver hematopoiesis
.
Cell
.
1996
;
84
(
2
):
321
-
330
.
14.
Wang
Q
,
Stacy
T
,
Binder
M
,
Marin-Padilla
M
,
Sharpe
AH
,
Speck
NA
.
Disruption of the Cbfa2 gene causes necrosis and hemorrhaging in the central nervous system and blocks definitive hematopoiesis
.
Proc Natl Acad Sci USA
.
1996
;
93
(
8
):
3444
-
3449
.
15.
Wang
Q
,
Stacy
T
,
Miller
JD
, et al
.
The CBFbeta subunit is essential for CBFalpha2 (AML1) function in vivo
.
Cell
.
1996
;
87
(
4
):
697
-
708
.
16.
Niki
M
,
Okada
H
,
Takano
H
, et al
.
Hematopoiesis in the fetal liver is impaired by targeted mutagenesis of a gene encoding a non-DNA binding subunit of the transcription factor, polyomavirus enhancer binding protein 2/core binding factor
.
Proc Natl Acad Sci USA
.
1997
;
94
(
11
):
5697
-
5702
.
17.
Sasaki
K
,
Yagi
H
,
Bronson
RT
, et al
.
Absence of fetal liver hematopoiesis in mice deficient in transcriptional coactivator core binding factor beta
.
Proc Natl Acad Sci USA
.
1996
;
93
(
22
):
12359
-
12363
.
18.
Gaidzik
VI
,
Bullinger
L
,
Schlenk
RF
, et al
.
RUNX1 mutations in acute myeloid leukemia: results from a comprehensive genetic and clinical analysis from the AML study group
.
J Clin Oncol
.
2011
;
29
(
10
):
1364
-
1372
.
19.
Cancer Genome Atlas Research N
.
Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia
.
N Engl J Med
.
2013
;
368
(
22
):
2059
-
2074
.
20.
Duployez
N
,
Marceau-Renaut
A
,
Boissel
N
, et al
.
Comprehensive mutational profiling of core binding factor acute myeloid leukemia
.
Blood
.
2016
;
127
(
20
):
2451
-
2459
.
21.
Faber
ZJ
,
Chen
X
,
Gedman
AL
, et al
.
The genomic landscape of core-binding factor acute myeloid leukemias
.
Nat Genet
.
2016
;
48
(
12
):
1551
-
1556
.
22.
Hyde
RK
,
Kamikubo
Y
,
Anderson
S
, et al
.
Cbfb/Runx1 repression-independent blockage of differentiation and accumulation of Csf2rb-expressing cells by Cbfb-MYH11
.
Blood
.
2010
;
115
(
7
):
1433
-
1443
.
23.
Zhen
T
,
Kwon
EM
,
Zhao
L
, et al
.
Chd7 deficiency delays leukemogenesis in mice induced by Cbfb-MYH11
.
Blood
.
2017
;
130
(
22
):
2431
-
2442
.
24.
Kamikubo
Y
,
Zhao
L
,
Wunderlich
M
, et al
.
Accelerated leukemogenesis by truncated CBF beta-SMMHC defective in high-affinity binding with RUNX1
.
Cancer Cell
.
2010
;
17
(
5
):
455
-
468
.
25.
Mandoli
A
,
Singh
AA
,
Jansen
PW
, et al
.
CBFB-MYH11/RUNX1 together with a compendium of hematopoietic regulators, chromatin modifiers and basal transcription factors occupies self-renewal genes in inv(16) acute myeloid leukemia
.
Leukemia
.
2014
;
28
(
4
):
770
-
778
.
26.
Hyde
RK
,
Zhao
L
,
Alemu
L
,
Liu
PP
.
Runx1 is required for hematopoietic defects and leukemogenesis in Cbfb-MYH11 knockin mice
.
Leukemia
.
2015
;
140
(
18
):
3765
-
3776
.
27.
Growney
JD
,
Shigematsu
H
,
Li
Z
, et al
.
Loss of Runx1 perturbs adult hematopoiesis and is associated with a myeloproliferative phenotype
.
Blood
.
2005
;
106
(
2
):
494
-
504
.
28.
Kuo
YH
,
Landrette
SF
,
Heilman
SA
, et al
.
Cbf beta-SMMHC induces distinct abnormal myeloid progenitors able to develop acute myeloid leukemia
.
Cancer Cell
.
2006
;
9
(
1
):
57
-
68
.
29.
Kuhn
R
,
Schwenk
F
,
Aguet
M
,
Rajewsky
K
.
Inducible gene targeting in mice
.
Science
.
1995
;
269
(
5229
):
1427
-
1429
.
30.
Kamikubo
Y
,
Hyde
RK
,
Zhao
L
, et al
.
The C-terminus of CBFbeta-SMMHC is required to induce embryonic hematopoietic defects and leukemogenesis
.
Blood
.
2013
;
121
(
4
):
638
-
642
.
31.
Ku
WL
,
Nakamura
K
,
Gao
W
, et al
.
Single-cell chromatin immunocleavage sequencing (scChIC-seq) to profile histone modification
.
Nat Methods
.
2019
;
16
(
4
):
323
-
325
.
32.
Zheng
GX
,
Terry
JM
,
Belgrader
P
, et al
.
Massively parallel digital transcriptional profiling of single cells
.
Nat Commun
.
2017
;
8
(
1
):
14049
.
33.
Lenny
N
,
Meyers
S
,
Hiebert
SW
.
Functional domains of the t(8;21) fusion protein, AML-1/ETO
.
Oncogene
.
1995
;
11
(
9
):
1761
-
1769
.
34.
Telfer
JC
,
Hedblom
EE
,
Anderson
MK
,
Laurent
MN
,
Rothenberg
EV
.
Localization of the domains in Runx transcription factors required for the repression of CD4 in thymocytes
.
J Immunol
.
2004
;
172
(
7
):
4359
-
4370
.
35.
Rhoades
KL
,
Hetherington
CJ
,
Rowley
JD
, et al
.
Synergistic up-regulation of the myeloid-specific promoter for the macrophage colony-stimulating factor receptor by AML1 and the t(8;21) fusion protein may contribute to leukemogenesis
.
Proc Natl Acad Sci USA
.
1996
;
93
(
21
):
11895
-
11900
.
36.
Ichikawa
M
,
Asai
T
,
Saito
T
, et al
.
AML-1 is required for megakaryocytic maturation and lymphocytic differentiation, but not for maintenance of hematopoietic stem cells in adult hematopoiesis [published correction in Nat Med. 2005;11:102]
.
Nat Med
.
2004
;
10
(
3
):
299
-
304
.
37.
Subramanian
A
,
Tamayo
P
,
Mootha
VK
, et al
.
Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles
.
Proc Natl Acad Sci USA
.
2005
;
102
(
43
):
15545
-
15550
.
38.
Bellissimo
DC
,
Chen
CH
,
Zhu
Q
, et al
.
Runx1 negatively regulates inflammatory cytokine production by neutrophils in response to Toll-like receptor signaling
.
Blood Adv
.
2020
;
4
(
6
):
1145
-
1158
.
39.
Saida
S
,
Zhen
T
,
Kim
E
, et al
.
Gata2 deficiency delays leukemogenesis while contributing to aggressive leukemia phenotype in Cbfb-MYH11 knockin mice
.
Leukemia
.
2020
;
34
(
3
):
759
-
770
.
40.
Cao
Y
,
Chen
Z
,
Chen
X
, et al
.
Accurate loop calling for 3D genomic data with cLoops
.
Bioinformatics
.
2020
;
36
(
3
):
666
-
675
.
41.
Khan
A
,
Mathelier
A
.
Intervene: a tool for intersection and visualization of multiple gene or genomic region sets
.
BMC Bioinformatics
.
2017
;
18
(
1
):
287
.
42.
McInnes
L
,
Healy
J
,
Melville
J
,
Großberger
L
.
Umap: uniform manifold approximation and projection for dimension reduction
.
J Open Source Softw.
2018
;
3
(
29
):
861
.
43.
Zhao
L
,
Alkadi
H
,
Kwon
EM
, et al
.
The C-terminal multimerization domain is essential for leukemia development by CBFbeta-SMMHC in a mouse knockin model
.
Leukemia
.
2017
;
31
(
12
):
2841
-
2844
.
44.
Homan
ER
,
Zendzian
RP
,
Schott
LD
,
Levy
HB
,
Adamson
RH
.
Studies on poly I:C toxicity in experimental animals
.
Toxicol Appl Pharmacol
.
1972
;
23
(
4
):
579
-
588
.
45.
Chawla-Sarkar
M
,
Lindner
DJ
,
Liu
YF
, et al
.
Apoptosis and interferons: role of interferon-stimulated genes as mediators of apoptosis
.
Apoptosis
.
2003
;
8
(
3
):
237
-
249
.
46.
Cunningham
L
,
Finckbeiner
S
,
Hyde
RK
, et al
.
Identification of benzodiazepine Ro5-3335 as an inhibitor of CBF leukemia through quantitative high throughput screen against RUNX1-CBFbeta interaction
.
Proc Natl Acad Sci USA
.
2012
;
109
(
36
):
14592
-
14597
.
47.
Illendula
A
,
Pulikkan
JA
,
Zong
H
, et al
.
Chemical biology. A small-molecule inhibitor of the aberrant transcription factor CBFbeta-SMMHC delays leukemia in mice
.
Science
.
2015
;
347
(
6223
):
779
-
784
.
You do not currently have access to this content.