Abstract

Activated B-cell (ABC)-diffuse large B-cell lymphomas (DLBCLs) are clinically aggressive and phenotypically complex malignancies, whose transformation mechanisms remain unclear. Partially differentiated antigen-secreting cells (plasmablasts) have long been regarded as cells-of-origin for these tumors, despite lack of definitive experimental evidence. Recent DLBCL reclassification based on mutational landscapes identified MCD/C5 tumors as specific ABC-DLBCLs with unfavorable clinical outcome, activating mutations in the signaling adaptors MYD88 and CD79B, and immune evasion through mutation of antigen-presenting genes. MCD/C5s manifest prominent extranodal dissemination and similarities with primary extranodal lymphomas (PENLs). In this regard, recent studies on TBL1XR1, a gene recurrently mutated in MCD/C5s and PENLs, suggest that aberrant memory B cells (MBs), and not plasmablasts, are the true cells-of-origin for these tumors. Moreover, transcriptional and phenotypic profiling suggests that MCD/C5s, as a class, represent bona fide MB tumors. Based on emerging findings we propose herein a generalized stepwise model for MCD/C5 and PENLs pathogenesis, whereby acquisition of founder mutations in activated B cells favors the development of aberrant MBs prone to avoid plasmacytic differentiation on recall and undergo systemic dissemination. Cyclic reactivation of these MBs through persistent antigen exposure favors their clonal expansion and accumulation of mutations, which further facilitate their activation. As a result, MB-like clonal precursors become trapped in an oscillatory state of semipermanent activation and phenotypic sway that facilitates ulterior transformation and accounts for the extranodal clinical presentation and biology of these tumors. In addition, we discuss diagnostic and therapeutic implications of a MB cell-of-origin for these lymphomas.

REFERENCES

1.
Cyster
JG
,
Allen
CDC
.
B cell responses: cell interaction dynamics and decisions
.
Cell
.
2019
;
177
(
3
):
524
-
540
.
2.
Wright
G
,
Tan
B
,
Rosenwald
A
,
Hurt
EH
,
Wiestner
A
,
Staudt
LM
.
A gene expression-based method to diagnose clinically distinct subgroups of diffuse large B cell lymphoma
.
Proc Natl Acad Sci USA
.
2003
;
100
(
17
):
9991
-
9996
.
3.
Beham-Schmid
C
.
Aggressive lymphoma 2016: revision of the WHO classification
.
Memo
.
2017
;
10
(
4
):
248
-
254
.
4.
Wright
GW
,
Huang
DW
,
Phelan
JD
, et al
.
A probabilistic classification tool for genetic subtypes of diffuse large B cell lymphoma with therapeutic implications
.
Cancer Cell
.
2020
;
37
(
4
):
551
-
568
.
5.
Schmitz
R
,
Wright
GW
,
Huang
DW
, et al
.
Genetics and pathogenesis of diffuse large B-cell lymphoma
.
N Engl J Med
.
2018
;
378
(
15
):
1396
-
1407
.
6.
Chapuy
B
,
Stewart
C
,
Dunford
AJ
, et al
.
Molecular subtypes of diffuse large B cell lymphoma are associated with distinct pathogenic mechanisms and outcomes [published corrections in Nat Med. 2018;24:1292 and Nat Med. 2018;24:1290-1291]
.
Nat Med
.
2018
;
24
(
5
):
679
-
690
.
7.
Venturutti
L
,
Teater
M
,
Zhai
A
, et al
.
TBL1XR1 mutations drive extranodal lymphoma by introducing a protumorigenic memory fate
.
Cell
.
2020
;
182
(
2
):
297
-
316.e27
.
8.
Gonzalez-Aguilar
A
,
Idbaih
A
,
Boisselier
B
, et al
.
Recurrent mutations of MYD88 and TBL1XR1 in primary central nervous system lymphomas
.
Clin Cancer Res
.
2012
;
18
(
19
):
5203
-
5211
.
9.
Chapuy
B
,
Roemer
MG
,
Stewart
C
, et al
.
Targetable genetic features of primary testicular and primary central nervous system lymphomas
.
Blood
.
2016
;
127
(
7
):
869
-
881
.
10.
Pals
ST
,
de Gorter
DJ
,
Spaargaren
M
.
Lymphoma dissemination: the other face of lymphocyte homing
.
Blood
.
2007
;
110
(
9
):
3102
-
3111
.
11.
Lenz
G
.
Insights into the molecular pathogenesis of activated B-cell-like diffuse large B-cell lymphoma and its therapeutic implications
.
Cancers (Basel)
.
2015
;
7
(
2
):
811
-
822
.
12.
Xie
Y
,
Pittaluga
S
,
Jaffe
ES
.
The histological classification of diffuse large B-cell lymphomas
.
Semin Hematol
.
2015
;
52
(
2
):
57
-
66
.
13.
Alizadeh
AA
,
Eisen
MB
,
Davis
RE
, et al
.
Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling
.
Nature
.
2000
;
403
(
6769
):
503
-
511
.
14.
Tellier
J
,
Shi
W
,
Minnich
M
, et al
.
Blimp-1 controls plasma cell function through the regulation of immunoglobulin secretion and the unfolded protein response
.
Nat Immunol
.
2016
;
17
(
3
):
323
-
330
.
15.
Klein
U
,
Casola
S
,
Cattoretti
G
, et al
.
Transcription factor IRF4 controls plasma cell differentiation and class-switch recombination
.
Nat Immunol
.
2006
;
7
(
7
):
773
-
782
.
16.
Holmes
AB
,
Corinaldesi
C
,
Shen
Q
, et al
.
Single-cell analysis of germinal-center B cells informs on lymphoma cell of origin and outcome
.
J Exp Med
.
2020
;
217
(
10
):
e20200483
.
17.
Weisel
F
,
Shlomchik
M
,
Memory
B
.
Memory B cells of mice and humans
.
Annu Rev Immunol
.
2017
;
35
(
1
):
255
-
284
.
18.
Jones
DD
,
Wilmore
JR
,
Allman
D
.
Cellular dynamics of memory B cell populations: IgM+ and IgG+ memory B cells persist indefinitely as quiescent cells
.
J Immunol
.
2015
;
195
(
10
):
4753
-
4759
.
19.
Zuccarino-Catania
GV
,
Sadanand
S
,
Weisel
FJ
, et al
.
CD80 and PD-L2 define functionally distinct memory B cell subsets that are independent of antibody isotype
.
Nat Immunol
.
2014
;
15
(
7
):
631
-
637
.
20.
Luckey
CJ
,
Bhattacharya
D
,
Goldrath
AW
,
Weissman
IL
,
Benoist
C
,
Mathis
D
.
Memory T and memory B cells share a transcriptional program of self-renewal with long-term hematopoietic stem cells
.
Proc Natl Acad Sci USA
.
2006
;
103
(
9
):
3304
-
3309
.
21.
Brynjolfsson
SF
,
Persson Berg
L
,
Olsen Ekerhult
T
, et al
.
Long-lived plasma cells in mice and men
.
Front Immunol
.
2018
;
9
:
2673
.
22.
Deenick
EK
,
Avery
DT
,
Chan
A
, et al
.
Naive and memory human B cells have distinct requirements for STAT3 activation to differentiate into antibody-secreting plasma cells
.
J Exp Med
.
2013
;
210
(
12
):
2739
-
2753
.
23.
Lai
AY
,
Mav
D
,
Shah
R
, et al
.
DNA methylation profiling in human B cells reveals immune regulatory elements and epigenetic plasticity at Alu elements during B-cell activation
.
Genome Res
.
2013
;
23
(
12
):
2030
-
2041
.
24.
Arpin
C
,
Banchereau
J
,
Liu
YJ
.
Memory B cells are biased towards terminal differentiation: a strategy that may prevent repertoire freezing
.
J Exp Med
.
1997
;
186
(
6
):
931
-
940
.
25.
Mesin
L
,
Schiepers
A
,
Ersching
J
, et al
.
Restricted clonality and limited germinal center reentry characterize memory B cell reactivation by boosting
.
Cell
.
2020
;
180
(
1
):
92
-
106
.
26.
Seifert
M
,
Przekopowitz
M
,
Taudien
S
, et al
.
Functional capacities of human IgM memory B cells in early inflammatory responses and secondary germinal center reactions
.
Proc Natl Acad Sci USA
.
2015
;
112
(
6
):
E546
-
E555
.
27.
Dogan
I
,
Bertocci
B
,
Vilmont
V
, et al
.
Multiple layers of B cell memory with different effector functions
.
Nat Immunol
.
2009
;
10
(
12
):
1292
-
1299
.
28.
Weisel
FJ
,
Zuccarino-Catania
GV
,
Chikina
M
,
Shlomchik
MJ
.
A temporal switch in the germinal center determines differential output of memory B and plasma cells
.
Immunity
.
2016
;
44
(
1
):
116
-
130
.
29.
Dhenni
R
,
Phan
TG
.
The geography of memory B cell reactivation in vaccine-induced immunity and in autoimmune disease relapses
.
Immunol Rev
.
2020
;
296
(
1
):
62
-
86
.
30.
Zhao
S
,
Zhu
W
,
Xue
S
,
Han
D
.
Testicular defense systems: immune privilege and innate immunity
.
Cell Mol Immunol
.
2014
;
11
(
5
):
428
-
437
.
31.
Blauth
K
,
Owens
GP
,
Bennett
JL
.
The ins and outs of B cells in multiple sclerosis
.
Front Immunol
.
2015
;
6
:
565
.
32.
Liu
M
,
Duke
JL
,
Richter
DJ
, et al
.
Two levels of protection for the B cell genome during somatic hypermutation
.
Nature
.
2008
;
451
(
7180
):
841
-
845
.
33.
Sungalee
S
,
Mamessier
E
,
Morgado
E
, et al
.
Germinal center reentries of BCL2-overexpressing B cells drive follicular lymphoma progression
.
J Clin Invest
.
2014
;
124
(
12
):
5337
-
5351
.
34.
Korfi
K
,
Ali
S
,
Heward
JA
,
Fitzgibbon
J
.
Follicular lymphoma, a B cell malignancy addicted to epigenetic mutations
.
Epigenetics
.
2017
;
12
(
5
):
370
-
377
.
35.
Zhang
J
,
Kalkum
M
,
Chait
BT
,
Roeder
RG
.
The N-CoR-HDAC3 nuclear receptor corepressor complex inhibits the JNK pathway through the integral subunit GPS2
.
Mol Cell
.
2002
;
9
(
3
):
611
-
623
.
36.
Shinnakasu
R
,
Inoue
T
,
Kometani
K
, et al
.
Regulated selection of germinal-center cells into the memory B cell compartment
.
Nat Immunol
.
2016
;
17
(
7
):
861
-
869
.
37.
Minnich
M
,
Tagoh
H
,
Bönelt
P
, et al
.
Multifunctional role of the transcription factor Blimp-1 in coordinating plasma cell differentiation
.
Nat Immunol
.
2016
;
17
(
3
):
331
-
343
.
38.
Thompsett
AR
,
Ellison
DW
,
Stevenson
FK
,
Zhu
D
.
V(H) gene sequences from primary central nervous system lymphomas indicate derivation from highly mutated germinal center B cells with ongoing mutational activity
.
Blood
.
1999
;
94
(
5
):
1738
-
1746
.
39.
Ou
A
,
Sumrall
A
,
Phuphanich
S
, et al
.
Primary CNS lymphoma commonly expresses immune response biomarkers
.
Neurooncol Adv
.
2020
;
2
(
1
):
vdaa018
.
40.
Davis
RE
,
Brown
KD
,
Siebenlist
U
,
Staudt
LM
.
Constitutive nuclear factor kappaB activity is required for survival of activated B cell-like diffuse large B cell lymphoma cells
.
J Exp Med
.
2001
;
194
(
12
):
1861
-
1874
.
41.
Wilson
WH
,
Young
RM
,
Schmitz
R
, et al
.
Targeting B cell receptor signaling with ibrutinib in diffuse large B cell lymphoma
.
Nat Med
.
2015
;
21
(
8
):
922
-
926
.
42.
Koff
JL
,
Flowers
CR
.
B cells gone rogue: the intersection of diffuse large B cell lymphoma and autoimmune disease
.
Expert Rev Hematol
.
2016
;
9
(
6
):
553
-
561
.
43.
Cuttner
J
,
Spiera
H
,
Troy
K
,
Wallenstein
S
.
Autoimmune disease is a risk factor for the development of non-Hodgkin’s lymphoma
.
J Rheumatol
.
2005
;
32
(
10
):
1884
-
1887
.
44.
Singh
M
,
Jackson
KJL
,
Wang
JJ
, et al
.
Lymphoma driver mutations in the pathogenic evolution of an iconic human autoantibody
.
Cell
.
2020
;
180
(
5
):
878
-
894
.
45.
Ruminy
P
,
Etancelin
P
,
Couronné
L
, et al
.
The isotype of the BCR as a surrogate for the GCB and ABC molecular subtypes in diffuse large B-cell lymphoma
.
Leukemia
.
2011
;
25
(
4
):
681
-
688
.
46.
Montesinos-Rongen
M
,
Terrao
M
,
May
C
, et al
.
The process of somatic hypermutation increases polyreactivity for central nervous system antigens in primary central nervous system lymphoma [published online ahead of print 19 March 2020]
.
Haematologica
.
doi:10.3324/haematol.2019.242701
.
47.
Young
RM
,
Wu
T
,
Schmitz
R
, et al
.
Survival of human lymphoma cells requires B-cell receptor engagement by self-antigens
.
Proc Natl Acad Sci USA
.
2015
;
112
(
44
):
13447
-
13454
.
48.
Haynes
BF
,
Verkoczy
L
,
Kelsoe
G
.
Redemption of autoreactive B cells
.
Proc Natl Acad Sci USA
.
2014
;
111
(
25
):
9022
-
9023
.
49.
Sabouri
Z
,
Schofield
P
,
Horikawa
K
, et al
.
Redemption of autoantibodies on anergic B cells by variable-region glycosylation and mutation away from self-reactivity
.
Proc Natl Acad Sci USA
.
2014
;
111
(
25
):
E2567
-
E2575
.
50.
Visco
C
,
Finotto
S
.
Hepatitis C virus and diffuse large B-cell lymphoma: pathogenesis, behavior and treatment
.
World J Gastroenterol
.
2014
;
20
(
32
):
11054
-
11061
.
51.
Rong
X
,
Wang
H
,
Ma
J
, et al
.
Chronic hepatitis B virus infection is associated with a poorer prognosis in diffuse large B-cell lymphoma: a meta-analysis and systemic review
.
J Cancer
.
2019
;
10
(
15
):
3450
-
3458
.
52.
Deng
L
,
Song
Y
,
Young
KH
, et al
.
Hepatitis B virus-associated diffuse large B-cell lymphoma: unique clinical features, poor outcome, and hepatitis B surface antigen-driven origin
.
Oncotarget
.
2015
;
6
(
28
):
25061
-
25073
.
53.
Sung
WK
,
Zheng
H
,
Li
S
, et al
.
Genome-wide survey of recurrent HBV integration in hepatocellular carcinoma
.
Nat Genet
.
2012
;
44
(
7
):
765
-
769
.
54.
Huang
CE
,
Yang
YH
,
Chen
YY
, et al
.
The impact of hepatitis B virus infection and vaccination on the development of non-Hodgkin lymphoma
.
J Viral Hepat
.
2017
;
24
(
10
):
885
-
894
.
55.
Arcaini
L
,
Rossi
D
,
Lucioni
M
, et al
.
The NOTCH pathway is recurrently mutated in diffuse large B-cell lymphoma associated with hepatitis C virus infection
.
Haematologica
.
2015
;
100
(
2
):
246
-
252
.
56.
Ren
W
,
Ye
X
,
Su
H
, et al
.
Genetic landscape of hepatitis B virus-associated diffuse large B-cell lymphoma
.
Blood
.
2018
;
131
(
24
):
2670
-
2681
.
57.
Rojas
M
,
Restrepo-Jiménez
P
,
Monsalve
DM
, et al
.
Molecular mimicry and autoimmunity
.
J Autoimmun
.
2018
;
95
:
100
-
123
.
58.
Lenz
G
,
Nagel
I
,
Siebert
R
, et al
.
Aberrant immunoglobulin class switch recombination and switch translocations in activated B cell-like diffuse large B cell lymphoma
.
J Exp Med
.
2007
;
204
(
3
):
633
-
643
.
59.
Papa
I
,
Vinuesa
CG
.
Synaptic interactions in germinal centers
.
Front Immunol
.
2018
;
9
:
1858
.
60.
Zhang
J
,
Liu
W
,
Wen
B
, et al
.
Circulating CXCR3+ Tfh cells positively correlate with neutralizing antibody responses in HCV-infected patients
.
Sci Rep
.
2019
;
9
(
1
):
10090
.
61.
Vella
LA
,
Buggert
M
,
Manne
S
, et al
.
T follicular helper cells in human efferent lymph retain lymphoid characteristics
.
J Clin Invest
.
2019
;
129
(
8
):
3185
-
3200
.
62.
Koutsakos
M
,
Wheatley
AK
,
Loh
L
, et al
.
Circulating TFH cells, serological memory, and tissue compartmentalization shape human influenza-specific B cell immunity
.
Sci Transl Med
.
2018
;
10
(
428
):
eaan8405
.
63.
Vu Van
D
,
Beier
KC
,
Pietzke
LJ
, et al
.
Local T/B cooperation in inflamed tissues is supported by T follicular helper-like cells
.
Nat Commun
.
2016
;
7
:
10875
.
64.
Bashir
R
,
Chamberlain
M
,
Ruby
E
,
Hochberg
FH
.
T-cell infiltration of primary CNS lymphoma
.
Neurology
.
1996
;
46
(
2
):
440
-
444
.
65.
Serafini
B
,
Rosicarelli
B
,
Magliozzi
R
,
Stigliano
E
,
Aloisi
F
.
Detection of ectopic B-cell follicles with germinal centers in the meninges of patients with secondary progressive multiple sclerosis
.
Brain Pathol
.
2004
;
14
(
2
):
164
-
174
.
66.
Roco
JA
,
Mesin
L
,
Binder
SC
, et al
.
Class-switch recombination occurs infrequently in germinal centers
.
Immunity
.
2019
;
51
(
2
):
337
-
350
.
67.
Cattoretti
G
,
Büttner
M
,
Shaknovich
R
,
Kremmer
E
,
Alobeid
B
,
Niedobitek
G
.
Nuclear and cytoplasmic AID in extrafollicular and germinal center B cells
.
Blood
.
2006
;
107
(
10
):
3967
-
3975
.
68.
Weller
S
,
Faili
A
,
Garcia
C
, et al
.
CD40-CD40L independent Ig gene hypermutation suggests a second B cell diversification pathway in humans
.
Proc Natl Acad Sci USA
.
2001
;
98
(
3
):
1166
-
1170
.
69.
William
J
,
Euler
C
,
Christensen
S
,
Shlomchik
MJ
.
Evolution of autoantibody responses via somatic hypermutation outside of germinal centers
.
Science
.
2002
;
297
(
5589
):
2066
-
2070
.
70.
Cerutti
A
,
Puga
I
,
Magri
G
.
The B cell helper side of neutrophils
.
J Leukoc Biol
.
2013
;
94
(
4
):
677
-
682
.
71.
Baumjohann
D
,
Preite
S
,
Reboldi
A
, et al
.
Persistent antigen and germinal center B cells sustain T follicular helper cell responses and phenotype
.
Immunity
.
2013
;
38
(
3
):
596
-
605
.
72.
Pone
EJ
,
Zhang
J
,
Mai
T
, et al
.
BCR-signalling synergizes with TLR-signalling for induction of AID and immunoglobulin class-switching through the non-canonical NF-κB pathway
.
Nat Commun
.
2012
;
3
:
767
.
73.
Sciammas
R
,
Shaffer
AL
,
Schatz
JH
,
Zhao
H
,
Staudt
LM
,
Singh
H
.
Graded expression of interferon regulatory factor-4 coordinates isotype switching with plasma cell differentiation
.
Immunity
.
2006
;
25
(
2
):
225
-
236
.
74.
Pasqualucci
L
,
Guglielmino
R
,
Houldsworth
J
, et al
.
Expression of the AID protein in normal and neoplastic B cells
.
Blood
.
2004
;
104
(
10
):
3318
-
3325
.
75.
Grumont
RJ
,
Gerondakis
S
.
Rel induces interferon regulatory factor 4 (IRF-4) expression in lymphocytes: modulation of interferon-regulated gene expression by rel/nuclear factor kappaB
.
J Exp Med
.
2000
;
191
(
8
):
1281
-
1292
.
76.
Calado
DP
,
Sasaki
Y
,
Godinho
SA
, et al
.
The cell-cycle regulator c-Myc is essential for the formation and maintenance of germinal centers
.
Nat Immunol
.
2012
;
13
(
11
):
1092
-
1100
.
77.
Kitano
M
,
Moriyama
S
,
Ando
Y
, et al
.
Bcl6 protein expression shapes pre-germinal center B cell dynamics and follicular helper T cell heterogeneity
.
Immunity
.
2011
;
34
(
6
):
961
-
972
.
78.
Landgren
O
,
Staudt
L
.
MYD88 L265P somatic mutation in IgM MGUS
.
N Engl J Med
.
2012
;
367
(
23
):
2255
-
2256, NaN-2257
.
79.
Janz
S
.
Waldenström macroglobulinemia: clinical and immunological aspects, natural history, cell of origin, and emerging mouse models
.
ISRN Hematol
.
2013
;
2013
:
815325
.
80.
Ho
AW
,
Hatjiharissi
E
,
Ciccarelli
BT
, et al
.
CD27-CD70 interactions in the pathogenesis of Waldenstrom macroglobulinemia
.
Blood
.
2008
;
112
(
12
):
4683
-
4689
.
81.
Castillo
JJ
,
Gustine
J
,
Meid
K
,
Dubeau
T
,
Hunter
ZR
,
Treon
SP
.
Histological transformation to diffuse large B-cell lymphoma in patients with Waldenström macroglobulinemia
.
Am J Hematol
.
2016
;
91
(
10
):
1032
-
1035
.
82.
Reynaud
CA
,
Descatoire
M
,
Dogan
I
,
Huetz
F
,
Weller
S
,
Weill
JC
.
IgM memory B cells: a mouse/human paradox
.
Cell Mol Life Sci
.
2012
;
69
(
10
):
1625
-
1634
.
83.
Rubtsov
AV
,
Rubtsova
K
,
Fischer
A
, et al
.
Toll-like receptor 7 (TLR7)-driven accumulation of a novel CD11c+ B-cell population is important for the development of autoimmunity
.
Blood
.
2011
;
118
(
5
):
1305
-
1315
.
84.
Hao
Y
,
O’Neill
P
,
Naradikian
MS
,
Scholz
JL
,
Cancro
MP
.
A B-cell subset uniquely responsive to innate stimuli accumulates in aged mice
.
Blood
.
2011
;
118
(
5
):
1294
-
1304
.
85.
Phalke
S
,
Marrack
P
.
Age (autoimmunity) associated B cells (ABCs) and their relatives
.
Curr Opin Immunol
.
2018
;
55
:
75
-
80
.
86.
Lazarevic
V
,
Glimcher
LH
,
Lord
GM
.
T-bet: a bridge between innate and adaptive immunity
.
Nat Rev Immunol
.
2013
;
13
(
11
):
777
-
789
.
87.
Kenderes
KJ
,
Levack
RC
,
Papillion
AM
,
Cabrera-Martinez
B
,
Dishaw
LM
,
Winslow
GM
.
T-Bet(+) IgM memory cells generate multi-lineage effector B cells
.
Cell Rep
.
2018
;
24
(
4
):
824
-
837
.
88.
Cancro
MP
.
Age-associated B cells
.
Annu Rev Immunol
.
2020
;
38
(
1
):
315
-
340
.
89.
Rubtsova
K
,
Rubtsov
AV
,
van Dyk
LF
,
Kappler
JW
,
Marrack
P
.
T-box transcription factor T-bet, a key player in a unique type of B-cell activation essential for effective viral clearance
.
Proc Natl Acad Sci USA
.
2013
;
110
(
34
):
E3216
-
E3224
.
90.
Tian
M
,
Hua
Z
,
Hong
S
, et al
.
B cell-intrinsic MyD88 signaling promotes initial cell proliferation and differentiation to enhance the germinal center response to a virus-like particle
.
J Immunol
.
2018
;
200
(
3
):
937
-
948
.
91.
Gupta
M
,
Han
JJ
,
Stenson
M
, et al
.
Elevated serum IL-10 levels in diffuse large B-cell lymphoma: a mechanism of aberrant JAK2 activation
.
Blood
.
2012
;
119
(
12
):
2844
-
2853
.
92.
Forrester
JV
,
McMenamin
PG
,
Dando
SJ
.
CNS infection and immune privilege
.
Nat Rev Neurosci
.
2018
;
19
(
11
):
655
-
671
.
93.
Gravelle
P
,
Burroni
B
,
Péricart
S
, et al
.
Mechanisms of PD-1/PD-L1 expression and prognostic relevance in non-Hodgkin lymphoma: a summary of immunohistochemical studies
.
Oncotarget
.
2017
;
8
(
27
):
44960
-
44975
.
94.
Cao
HY
,
Zou
P
,
Zhou
H
.
Genetic association of interleukin-10 promoter polymorphisms and susceptibility to diffuse large B-cell lymphoma: a meta-analysis
.
Gene
.
2013
;
519
(
2
):
288
-
294
.
95.
Iyer
SS
,
Cheng
G
.
Role of interleukin 10 transcriptional regulation in inflammation and autoimmune disease
.
Crit Rev Immunol
.
2012
;
32
(
1
):
23
-
63
.
96.
Coiffier
B
,
Thieblemont
C
,
Van Den Neste
E
, et al
.
Long-term outcome of patients in the LNH-98.5 trial, the first randomized study comparing rituximab-CHOP to standard CHOP chemotherapy in DLBCL patients: a study by the Groupe d’Etudes des Lymphomes de l’Adulte
.
Blood
.
2010
;
116
(
12
):
2040
-
2045
.
97.
Vitolo
U
,
Seymour
JF
,
Martelli
M
, et al;
ESMO Guidelines Committee
.
Extranodal diffuse large B-cell lymphoma (DLBCL) and primary mediastinal B-cell lymphoma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up
.
Ann Oncol
.
2016
;
27
(
suppl 5
):
v91
-
v102
.
98.
Nowakowski
GS
,
Feldman
T
,
Rimsza
LM
,
Westin
JR
,
Witzig
TE
,
Zinzani
PL
.
Integrating precision medicine through evaluation of cell of origin in treatment planning for diffuse large B-cell lymphoma
.
Blood Cancer J
.
2019
;
9
(
6
):
48
.
99.
Lionakis
MS
,
Dunleavy
K
,
Roschewski
M
, et al
.
Inhibition of B cell receptor signaling by ibrutinib in primary CNS lymphoma
.
Cancer Cell
.
2017
;
31
(
6
):
833
-
843
.
100.
Grommes
C
,
Pastore
A
,
Palaskas
N
, et al
.
Ibrutinib unmasks critical role of bruton tyrosine kinase in primary CNS lymphoma
.
Cancer Discov
.
2017
;
7
(
9
):
1018
-
1029
.
101.
Kelly
PN
,
Romero
DL
,
Yang
Y
, et al
.
Selective interleukin-1 receptor-associated kinase 4 inhibitors for the treatment of autoimmune disorders and lymphoid malignancy
.
J Exp Med
.
2015
;
212
(
13
):
2189
-
2201
.
102.
Nagel
D
,
Bognar
M
,
Eitelhuber
AC
,
Kutzner
K
,
Vincendeau
M
,
Krappmann
D
.
Combinatorial BTK and MALT1 inhibition augments killing of CD79 mutant diffuse large B cell lymphoma
.
Oncotarget
.
2015
;
6
(
39
):
42232
-
42242
.
103.
Fontán
L
,
Qiao
Q
,
Hatcher
JM
, et al
.
Specific covalent inhibition of MALT1 paracaspase suppresses B cell lymphoma growth
.
J Clin Invest
.
2018
;
128
(
10
):
4397
-
4412
.
104.
Kapoor
I
,
Li
Y
,
Sharma
A
, et al
.
Resistance to BTK inhibition by ibrutinib can be overcome by preventing FOXO3a nuclear export and PI3K/AKT activation in B-cell lymphoid malignancies
.
Cell Death Dis
.
2019
;
10
(
12
):
924
.
105.
Stengel
KR
,
Bhaskara
S
,
Wang
J
, et al
.
Histone deacetylase 3 controls a transcriptional network required for B cell maturation
.
Nucleic Acids Res
.
2019
;
47
(
20
):
10612
-
10627
.
106.
Jiang
Y
,
Ortega-Molina
A
,
Geng
H
, et al
.
CREBBP inactivation promotes the development of HDAC3-dependent lymphomas
.
Cancer Discov
.
2017
;
7
(
1
):
38
-
53
.
107.
Hatzi
K
,
Jiang
Y
,
Huang
C
, et al
.
A hybrid mechanism of action for BCL6 in B cells defined by formation of functionally distinct complexes at enhancers and promoters
.
Cell Rep
.
2013
;
4
(
3
):
578
-
588
.
108.
Mondello
P
,
Tadros
S
,
Teater
M
, et al
.
Selective inhibition of HDAC3 targets synthetic vulnerabilities and activates immune surveillance in lymphoma
.
Cancer Discov
.
2020
;
10
(
3
):
440
-
459
.
109.
Takatsuka
S
,
Yamada
H
,
Haniuda
K
, et al
.
IL-9 receptor signaling in memory B cells regulates humoral recall responses
.
Nat Immunol
.
2018
;
19
(
9
):
1025
-
1034
.
110.
Lv
X
,
Feng
L
,
Ge
X
,
Lu
K
,
Wang
X
.
Interleukin-9 promotes cell survival and drug resistance in diffuse large B-cell lymphoma
.
J Exp Clin Cancer Res
.
2016
;
35
(
1
):
106
.
You do not currently have access to this content.

Sign in via your Institution

Sign In