Key Points

  • EVI1 overexpression, superenhancer hijacking, lack of MDS1-EVI1, and frequent GATA2 deficiency define 3q26/MECOM-rearranged AML.

  • 3q26/MECOM-rearranged AML is a single entity, including (but not limited to) inv(3)/t(3;3), and requires specialized diagnostic assays.

Abstract

Acute myeloid leukemia (AML) with inv(3)/t(3;3)(q21q26) is a distinct World Health Organization recognized entity, characterized by its aggressive course and poor prognosis. In this subtype of AML, the translocation of a GATA2 enhancer (3q21) to MECOM (3q26) results in overexpression of the MECOM isoform EVI1 and monoallelic expression of GATA2 from the unaffected allele. The full-length MECOM transcript, MDS1-EVI1, is not expressed as the result of the 3q26 rearrangement. Besides the classical inv(3)/t(3;3), a number of other 3q26/MECOM rearrangements with poor treatment response have been reported in AML. Here, we demonstrate, in a group of 33 AML patients with atypical 3q26 rearrangements, MECOM involvement with EVI1 overexpression but no or low MDS1-EVI1 levels. Moreover, the 3q26 translocations in these AML patients often involve superenhancers of genes active in myeloid development (eg, CD164, PROM1, CDK6, or MYC). In >50% of these cases, allele-specific GATA2 expression was observed, either by copy-number loss or by an unexplained allelic imbalance. Altogether, atypical 3q26 recapitulate the main leukemic mechanism of inv(3)/t(3;3) AML, namely EVI1 overexpression driven by enhancer hijacking, absent MDS1-EVI1 expression and potential GATA2 involvement. Therefore, we conclude that both atypical 3q26/MECOM and inv(3)/t(3;3) can be classified as a single entity of 3q26-rearranged AMLs. Routine analyses determining MECOM rearrangements and EVI1 and MDS1-EVI1 expression are required to recognize 3q-rearranged AML cases.

REFERENCES

1.
Döhner
H
,
Estey
EH
,
Amadori
S
, et al;
European LeukemiaNet
.
Diagnosis and management of acute myeloid leukemia in adults: recommendations from an international expert panel, on behalf of the European LeukemiaNet
.
Blood
.
2010
;
115
(
3
):
453
-
474
.
2.
Papaemmanuil
E
,
Gerstung
M
,
Bullinger
L
, et al
.
Genomic Classification and Prognosis in Acute Myeloid Leukemia
.
N Engl J Med
.
2016
;
374
(
23
):
2209
-
2221
.
3.
Genomic and Epigenomic Landscapes of Adult De Novo Acute Myeloid Leukemia
.
Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia
.
N Engl J Med
.
2013
;
368
(
22
):
2059
-
2074
.
4.
Döhner
H
,
Estey
E
,
Grimwade
D
, et al
.
Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel
.
Blood
.
2017
;
129
(
4
):
424
-
447
.
5.
Arber
DA
,
Orazi
A
,
Hasserjian
R
, et al
.
The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia
.
Blood
.
2016
;
127
(
20
):
2391
-
2405
.
6.
Morishita
K
,
Parganas
E
,
William
CL
, et al
.
Activation of EVI1 gene expression in human acute myelogenous leukemias by translocations spanning 300-400 kilobases on chromosome band 3q26
.
Proc Natl Acad Sci USA
.
1992
;
89
(
9
):
3937
-
3941
.
7.
Lugthart
S
,
van Drunen
E
,
van Norden
Y
, et al
.
High EVI1 levels predict adverse outcome in acute myeloid leukemia: prevalence of EVI1 overexpression and chromosome 3q26 abnormalities underestimated
.
Blood
.
2008
;
111
(
8
):
4329
-
4337
.
8.
Barjesteh van Waalwijk van Doorn-Khosrovani
S
,
Erpelinck
C
,
van Putten
WL
, et al
.
High EVI1 expression predicts poor survival in acute myeloid leukemia: a study of 319 de novo AML patients
.
Blood
.
2003
;
101
(
3
):
837
-
845
.
9.
Lugthart
S
,
Gröschel
S
,
Beverloo
HB
, et al
.
Clinical, molecular, and prognostic significance of WHO type inv(3)(q21q26.2)/t(3;3)(q21;q26.2) and various other 3q abnormalities in acute myeloid leukemia
.
J Clin Oncol
.
2010
;
28
(
24
):
3890
-
3898
.
10.
Mitelman
F
,
Johansson
B
,
Mertens
F
.
Fusion genes and rearranged genes as a linear function of chromosome aberrations in cancer
.
Nat Genet
.
2004
;
36
(
4
):
331
-
334
.
11.
Mitelman database of chromosome aberrations and gene fusions in cancer (2020). Mitelman F, Johansson B, Mertens F, eds. https://mitelmandatabase.isb-cgc.org. Accessed August 2019
.
12.
Fröhling
S
,
Döhner
H
.
Chromosomal abnormalities in cancer
.
N Engl J Med
.
2008
;
359
(
7
):
722
-
734
.
13.
Gröschel
S
,
Sanders
MA
,
Hoogenboezem
R
, et al
.
A single oncogenic enhancer rearrangement causes concomitant EVI1 and GATA2 deregulation in leukemia
.
Cell
.
2014
;
157
(
2
):
369
-
381
.
14.
Yamazaki
H
,
Suzuki
M
,
Otsuki
A
, et al
.
A remote GATA2 hematopoietic enhancer drives leukemogenesis in inv(3)(q21;q26) by activating EVI1 expression
.
Cancer Cell
.
2014
;
25
(
4
):
415
-
427
.
15.
Hsu
AP
,
Sampaio
EP
,
Khan
J
, et al
.
Mutations in GATA2 are associated with the autosomal dominant and sporadic monocytopenia and mycobacterial infection (MonoMAC) syndrome
.
Blood
.
2011
;
118
(
10
):
2653
-
2655
.
16.
Hsu
AP
,
Johnson
KD
,
Falcone
EL
, et al
.
GATA2 haploinsufficiency caused by mutations in a conserved intronic element leads to MonoMAC syndrome
.
Blood
.
2013
;
121
(
19
):
3830
-
3837
,
S1-S7
.
17.
Hahn
CN
,
Chong
C-E
,
Carmichael
CL
, et al
.
Heritable GATA2 mutations associated with familial myelodysplastic syndrome and acute myeloid leukemia
.
Nat Genet
.
2011
;
43
(
10
):
1012
-
1017
.
18.
Ostergaard
P
,
Simpson
MA
,
Connell
FC
, et al
.
Mutations in GATA2 cause primary lymphedema associated with a predisposition to acute myeloid leukemia (Emberger syndrome)
.
Nat Genet
.
2011
;
43
(
10
):
929
-
931
.
19.
Rodrigues
NP
,
Janzen
V
,
Forkert
R
, et al
.
Haploinsufficiency of GATA-2 perturbs adult hematopoietic stem-cell homeostasis
.
Blood
.
2005
;
106
(
2
):
477
-
484
.
20.
McGowan-Jordan
J
,
Simons
A
,
Schmid
M
;
International Standing Committee on Human Cytogenomic Nomenclature
.
ISCN: an International System for Human Cytogenomic Nomenclature (2016)
.
Basel
:
Karger
;
2016
.
21.
Gröschel
S
,
Lugthart
S
,
Schlenk
RF
, et al
.
High EVI1 expression predicts outcome in younger adult patients with acute myeloid leukemia and is associated with distinct cytogenetic abnormalities
.
J Clin Oncol
.
2010
;
28
(
12
):
2101
-
2107
.
22.
Valk
PJM
,
Verhaak
RGW
,
Beijen
MA
, et al
.
Prognostically useful gene-expression profiles in acute myeloid leukemia
.
N Engl J Med
.
2004
;
350
(
16
):
1617
-
1628
.
23.
Srebniak
M
,
Boter
M
,
Oudesluijs
G
, et al
.
Application of SNP array for rapid prenatal diagnosis: implementation, genetic counselling and diagnostic flow
.
Eur J Hum Genet
.
2011
;
19
(
12
):
1230
-
1237
.
24.
Srebniak
MI
,
Diderich
KEM
,
Joosten
M
, et al
.
Prenatal SNP array testing in 1000 fetuses with ultrasound anomalies: causative, unexpected and susceptibility CNVs
.
Eur J Hum Genet
.
2016
;
24
(
5
):
645
-
651
.
25.
Li
H
,
Durbin
R
.
Fast and accurate short read alignment with Burrows-Wheeler transform
.
Bioinformatics
.
2009
;
25
(
14
):
1754
-
1760
.
26.
Chen
K
,
Wallis
JW
,
McLellan
MD
, et al
.
BreakDancer: an algorithm for high-resolution mapping of genomic structural variation
.
Nat Methods
.
2009
;
6
(
9
):
677
-
681
.
27.
Robinson
JT
,
Thorvaldsdóttir
H
,
Winckler
W
, et al
.
Integrative genomics viewer
.
Nat Biotechnol
.
2011
;
29
(
1
):
24
-
26
.
28.
Mack
EKM
,
Marquardt
A
,
Langer
D
, et al
.
Comprehensive genetic diagnosis of acute myeloid leukemia by next-generation sequencing
.
Haematologica
.
2019
;
104
(
2
):
277
-
287
.
29.
Gerhardt
TM
,
Schmahl
GE
,
Flotho
C
,
Rath
AV
,
Niemeyer
CM
.
Expression of the Evi-1 gene in haemopoietic cells of children with juvenile myelomonocytic leukaemia and normal donors
.
Br J Haematol
.
1997
;
99
(
4
):
882
-
887
.
30.
Privitera
E
,
Longoni
D
,
Brambillasca
F
,
Biondi
A
.
EVI-1 gene expression in myeloid clonogenic cells from juvenile myelomonocytic leukemia (JMML)
.
Leukemia
.
1997
;
11
(
12
):
2045
-
2048
.
31.
Nucifora
G
,
Laricchia-Robbio
L
,
Senyuk
V
.
EVI1 and hematopoietic disorders: history and perspectives
.
Gene
.
2006
;
368
:
1
-
11
.
32.
Lin
P
,
Medeiros
LJ
,
Yin
CC
,
Abruzzo
LV
.
Translocation (3;8)(q26;q24): a recurrent chromosomal abnormality in myelodysplastic syndrome and acute myeloid leukemia
.
Cancer Genet Cytogenet
.
2006
;
166
(
1
):
82
-
85
.
33.
Lennon
PA
,
Abruzzo
LV
,
Medeiros
LJ
, et al
.
Aberrant EVI1 expression in acute myeloid leukemias associated with the t(3;8)(q26;q24)
.
Cancer Genet Cytogenet
.
2007
;
177
(
1
):
37
-
42
.
34.
De Braekeleer
M
,
Guéganic
N
,
Tous
C
, et al
.
Breakpoint heterogeneity in (2;3)(p15-23;q26) translocations involving EVI1 in myeloid hemopathies
.
Blood Cells Mol Dis
.
2015
;
54
(
2
):
160
-
163
.
35.
Trubia
M
,
Albano
F
,
Cavazzini
F
, et al
.
Characterization of a recurrent translocation t(2;3)(p15-22;q26) occurring in acute myeloid leukaemia [published correction appears in Leukemia. 2006;20:1195]
.
Leukemia
.
2006
;
20
(
1
):
48
-
54
.
36.
Storlazzi
CT
,
Anelli
L
,
Albano
F
, et al
.
A novel chromosomal translocation t(3;7)(q26;q21) in myeloid leukemia resulting in overexpression of EVI1
.
Ann Hematol
.
2004
;
83
(
2
):
78
-
83
.
37.
Chacon
D
,
Beck
D
,
Perera
D
,
Wong
JWH
,
Pimanda
JE
.
BloodChIP: a database of comparative genome-wide transcription factor binding profiles in human blood cells
.
Nucleic Acids Res
.
2014
;
42
(
Database issue D1
):
D172
-
D177
.
38.
Watt
SM
,
Chan
JYH
.
CD164--a novel sialomucin on CD34+ cells
.
Leuk Lymphoma
.
2000
;
37
(
1-2
):
1
-
25
.
39.
Pellin
D
,
Loperfido
M
,
Baricordi
C
, et al
.
A comprehensive single cell transcriptional landscape of human hematopoietic progenitors
.
Nat Commun
.
2019
;
10
(
1
):
2395
.
40.
Zannettino
ACW
,
Bühring
H-J
,
Niutta
S
,
Watt
SM
,
Benton
MA
,
Simmons
PJ
.
The sialomucin CD164 (MGC-24v) is an adhesive glycoprotein expressed by human hematopoietic progenitors and bone marrow stromal cells that serves as a potent negative regulator of hematopoiesis
.
Blood
.
1998
;
92
(
8
):
2613
-
2628
.
41.
Yin
AH
,
Miraglia
S
,
Zanjani
ED
, et al
.
AC133, a novel marker for human hematopoietic stem and progenitor cells
.
Blood
.
1997
;
90
(
12
):
5002
-
5012
.
42.
Matsuo
YAT
,
Tsubota
T
,
Imanishi
J
,
Minowada
J
.
Establishment and characterization of a novel megakaryoblastic cell line, MOLM-1, from a patient with chronic myelogenous leukemia
.
Hum Cell
.
1991
;
4
:
261
-
264
.
43.
Pott
S
,
Lieb
JD
.
What are super-enhancers?
Nat Genet
.
2015
;
47
(
1
):
8
-
12
.
44.
Lovén
J
,
Hoke
HA
,
Lin
CY
, et al
.
Selective inhibition of tumor oncogenes by disruption of super-enhancers
.
Cell
.
2013
;
153
(
2
):
320
-
334
.
45.
Whyte
WA
,
Orlando
DA
,
Hnisz
D
, et al
.
Master transcription factors and mediator establish super-enhancers at key cell identity genes
.
Cell
.
2013
;
153
(
2
):
307
-
319
.
46.
Mucenski
ML
,
Taylor
BA
,
Ihle
JN
, et al
.
Identification of a common ecotropic viral integration site, Evi-1, in the DNA of AKXD murine myeloid tumors
.
Mol Cell Biol
.
1988
;
8
(
1
):
301
-
308
.
47.
Ott
MG
,
Schmidt
M
,
Schwarzwaelder
K
, et al
.
Correction of X-linked chronic granulomatous disease by gene therapy, augmented by insertional activation of MDS1-EVI1, PRDM16 or SETBP1
.
Nat Med
.
2006
;
12
(
4
):
401
-
409
.
48.
Katayama
S
,
Suzuki
M
,
Yamaoka
A
, et al
.
GATA2 haploinsufficiency accelerates EVI1-driven leukemogenesis
.
Blood
.
2017
;
130
(
7
):
908
-
919
.
You do not currently have access to this content.

Sign in via your Institution

Sign In