Key Points

  • There is a progressive gradient of immunosuppression from immature to mature neutrophils present in the myeloma microenvironment.

  • CD11b+CD13+CD16+ mature neutrophils are epigenetically deregulated, and their abundance in the myeloma microenvironment is prognostic.

Abstract

Granulocytic myeloid-derived suppressor cells (G-MDSCs) promote tumor growth and immunosuppression in multiple myeloma (MM). However, their phenotype is not well established for accurate monitoring or clinical translation. We aimed to provide the phenotypic profile of G-MDSCs based on their prognostic significance in MM, immunosuppressive potential, and molecular program. The preestablished phenotype of G-MDSCs was evaluated in bone marrow samples from controls and MM patients using multidimensional flow cytometry; surprisingly, we found that CD11b+CD14CD15+CD33+HLADR cells overlapped with common eosinophils and neutrophils, which were not expanded in MM patients. Therefore, we relied on automated clustering to unbiasedly identify all granulocytic subsets in the tumor microenvironment: basophils, eosinophils, and immature, intermediate, and mature neutrophils. In a series of 267 newly diagnosed MM patients (GEM2012MENOS65 trial), only the frequency of mature neutrophils at diagnosis was significantly associated with patient outcome, and a high mature neutrophil/T-cell ratio resulted in inferior progression-free survival (P < .001). Upon fluorescence-activated cell sorting of each neutrophil subset, T-cell proliferation decreased in the presence of mature neutrophils (0.5-fold; P = .016), and the cytotoxic potential of T cells engaged by a BCMA×CD3-bispecific antibody increased notably with the depletion of mature neutrophils (fourfold; P = .0007). Most interestingly, RNA sequencing of the 3 subsets revealed that G-MDSC–related genes were specifically upregulated in mature neutrophils from MM patients vs controls because of differential chromatin accessibility. Taken together, our results establish a correlation between the clinical significance, immunosuppressive potential, and transcriptional network of well-defined neutrophil subsets, providing for the first time a set of optimal markers (CD11b/CD13/CD16) for accurate monitoring of G-MDSCs in MM.

REFERENCES

1.
Gabrilovich
DI
,
Ostrand-Rosenberg
S
,
Bronte
V
.
Coordinated regulation of myeloid cells by tumours
.
Nat Rev Immunol
.
2012
;
12
(
4
):
253
-
268
.
2.
Botta
C
,
Gullà
A
,
Correale
P
,
Tagliaferri
P
,
Tassone
P
.
Myeloid-derived suppressor cells in multiple myeloma: pre-clinical research and translational opportunities
.
Front Oncol
.
2014
;
4
:
348
.
3.
Gabrilovich
DI
,
Nagaraj
S
.
Myeloid-derived suppressor cells as regulators of the immune system
.
Nat Rev Immunol
.
2009
;
9
(
3
):
162
-
174
.
4.
Giese
MA
,
Hind
LE
,
Huttenlocher
A
.
Neutrophil plasticity in the tumor microenvironment
.
Blood
.
2019
;
133
(
20
):
2159
-
2167
.
5.
Bronte
V
,
Brandau
S
,
Chen
SH
, et al
.
Recommendations for myeloid-derived suppressor cell nomenclature and characterization standards
.
Nat Commun
.
2016
;
7
:
12150
.
6.
Greten
TF
,
Manns
MP
,
Korangy
F
.
Myeloid derived suppressor cells in human diseases
.
Int Immunopharmacol
.
2011
;
11
(
7
):
802
-
807
.
7.
De Veirman
K
,
Van Valckenborgh
E
,
Lahmar
Q
, et al
.
Myeloid-derived suppressor cells as therapeutic target in hematological malignancies
.
Front Oncol
.
2014
;
4
:
349
.
8.
Malek
E
,
de Lima
M
,
Letterio
JJ
, et al
.
Myeloid-derived suppressor cells: the green light for myeloma immune escape
.
Blood Rev
.
2016
;
30
(
5
):
341
-
348
.
9.
Ramachandran
IR
,
Martner
A
,
Pisklakova
A
, et al
.
Myeloid-derived suppressor cells regulate growth of multiple myeloma by inhibiting T cells in bone marrow
.
J Immunol
.
2013
;
190
(
7
):
3815
-
3823
.
10.
Tadmor
T
.
The growing link between multiple myeloma and myeloid derived suppressor cells
.
Leuk Lymphoma
.
2014
;
55
(
12
):
2681
-
2682
.
11.
Krejcik
J
,
Casneuf
T
,
Nijhof
IS
, et al
.
Daratumumab depletes CD38+ immune regulatory cells, promotes T-cell expansion, and skews T-cell repertoire in multiple myeloma
.
Blood
.
2016
;
128
(
3
):
384
-
394
.
12.
De Veirman
K
,
Menu
E
,
Maes
K
, et al
.
Myeloid-derived suppressor cells induce multiple myeloma cell survival by activating the AMPK pathway
.
Cancer Lett
.
2019
;
442
:
233
-
241
.
13.
Wang
J
,
De Veirman
K
,
De Beule
N
, et al
.
The bone marrow microenvironment enhances multiple myeloma progression by exosome-mediated activation of myeloid-derived suppressor cells
.
Oncotarget
.
2015
;
6
(
41
):
43992
-
44004
.
14.
Rosiñol
L
,
Oriol
A
,
Rios
R
, et al
.
Bortezomib, lenalidomide, and dexamethasone as induction therapy prior to autologous transplant in multiple myeloma
.
Blood
.
2019
;
134
(
16
):
1337
-
1345
.
15.
Paiva
B
,
Puig
N
,
Cedena
MT
, et al;
GEM (Grupo Español de Mieloma)/PETHEMA (Programa Para el Estudio de la Terapéutica en Hemopatías Malignas) Cooperative Study Group
.
Measurable residual disease by next-generation flow cytometry in multiple myeloma
.
J Clin Oncol
.
2019
;
38
(
8
):
784
-
792
.
16.
Chesney
JA
,
Mitchell
RA
,
Yaddanapudi
K
.
Myeloid-derived suppressor cells-a new therapeutic target to overcome resistance to cancer immunotherapy
.
J Leukoc Biol
.
2017
;
102
(
3
):
727
-
740
.
17.
Van Gassen
S
,
Callebaut
B
,
Van Helden
MJ
, et al
.
FlowSOM: using self-organizing maps for visualization and interpretation of cytometry data
.
Cytometry A
.
2015
;
87
(
7
):
636
-
645
.
18.
Flores-Montero
J
,
Sanoja-Flores
L
,
Paiva
B
, et al
.
Next generation flow for highly sensitive and standardized detection of minimal residual disease in multiple myeloma
.
Leukemia
.
2017
;
31
(
10
):
2094
-
2103
.
19.
Alameda
D
,
Saez
B
,
Lara-Astiaso
D
, et al
.
Characterization of freshly isolated mesenchymal stromal cells from healthy and multiple myeloma bone marrow: transcriptional modulation of the microenvironment [published online ahead of print 23 January 2020]
.
Haematologica
.
doi:10.3324/haematol.2019.235135
.
20.
Görgün
GT
,
Whitehill
G
,
Anderson
JL
, et al
.
Tumor-promoting immune-suppressive myeloid-derived suppressor cells in the multiple myeloma microenvironment in humans
.
Blood
.
2013
;
121
(
15
):
2975
-
2987
.
21.
Frassanito
MA
,
De Veirman
K
,
Desantis
V
, et al
.
Halting pro-survival autophagy by TGFβ inhibition in bone marrow fibroblasts overcomes bortezomib resistance in multiple myeloma patients
.
Leukemia
.
2016
;
30
(
3
):
640
-
648
.
22.
Lu
A
,
Pallero
MA
,
Lei
W
, et al
.
Inhibition of transforming growth factor-β activation diminishes tumor progression and osteolytic bone disease in mouse models of multiple myeloma
.
Am J Pathol
.
2016
;
186
(
3
):
678
-
690
.
23.
San José-Enériz
E
,
Agirre
X
,
Rabal
O
, et al
.
Discovery of first-in-class reversible dual small molecule inhibitors against G9a and DNMTs in hematological malignancies
.
Nat Commun
.
2017
;
8
:
15424
.
24.
Facon
T
,
Kumar
S
,
Plesner
T
, et al;
MAIA Trial Investigators
.
Daratumumab plus lenalidomide and dexamethasone for untreated myeloma
.
N Engl J Med
.
2019
;
380
(
22
):
2104
-
2115
.
25.
Mateos
MV
,
Hernández
MT
,
Giraldo
P
, et al
.
Lenalidomide plus dexamethasone for high-risk smoldering multiple myeloma
.
N Engl J Med
.
2013
;
369
(
5
):
438
-
447
.
26.
Raje
N
,
Berdeja
J
,
Lin
Y
, et al
.
Anti-BCMA CAR T-cell therapy bb2121 in relapsed or refractory multiple myeloma
.
N Engl J Med
.
2019
;
380
(
18
):
1726
-
1737
.
27.
Gabrilovich
DI
,
Bronte
V
,
Chen
SH
, et al
.
The terminology issue for myeloid-derived suppressor cells
.
Cancer Res
.
2007
;
67
(
1
):425, author reply 426.
28.
Sagiv
JY
,
Michaeli
J
,
Assi
S
, et al
.
Phenotypic diversity and plasticity in circulating neutrophil subpopulations in cancer
.
Cell Rep
.
2015
;
10
(
4
):
562
-
573
.
29.
Pillay
J
,
Tak
T
,
Kamp
VM
,
Koenderman
L
.
Immune suppression by neutrophils and granulocytic myeloid-derived suppressor cells: similarities and differences
.
Cell Mol Life Sci
.
2013
;
70
(
20
):
3813
-
3827
.
30.
Damasceno
D
,
Andrés
MP
,
van den Bossche
WB
, et al
.
Expression profile of novel cell surface molecules on different subsets of human peripheral blood antigen-presenting cells
.
Clin Transl Immunology
.
2016
;
5
(
9
):
e100
.
31.
Condamine
T
,
Mastio
J
,
Gabrilovich
DI
.
Transcriptional regulation of myeloid-derived suppressor cells
.
J Leukoc Biol
.
2015
;
98
(
6
):
913
-
922
.
32.
Fan
C
,
Stendahl
U
,
Stjernberg
N
,
Beckman
L
.
Association between orosomucoid types and cancer
.
Oncology
.
1995
;
52
(
6
):
498
-
500
.
33.
Yuan
M
,
Zhu
H
,
Xu
J
,
Zheng
Y
,
Cao
X
,
Liu
Q
.
Tumor-derived CXCL1 promotes lung cancer growth via recruitment of tumor-associated neutrophils
.
J Immunol Res
.
2016
;
2016
:
6530410
.
34.
Ng
LG
,
Ostuni
R
,
Hidalgo
A
.
Heterogeneity of neutrophils
.
Nat Rev Immunol
.
2019
;
19
(
4
):
255
-
265
.
35.
Andzinski
L
,
Kasnitz
N
,
Stahnke
S
, et al
.
Type I IFNs induce anti-tumor polarization of tumor associated neutrophils in mice and human
.
Int J Cancer
.
2016
;
138
(
8
):
1982
-
1993
.
36.
Pylaeva
E
,
Lang
S
,
Jablonska
J
.
The essential role of type I interferons in differentiation and activation of tumor-associated neutrophils
.
Front Immunol
.
2016
;
7
:
629
.
You do not currently have access to this content.

Sign in via your Institution

Sign In