Key Points

  • Excess IL-18 directs virus-induced hyperinflammation via autoinflammatory amplification of CD8 T-cell responses and IFNg overproduction.

  • Synergy between (even partial) cytotoxic impairment and excess IL-18 leads to spontaneous hyperinflammation.

Abstract

Hemophagocytic lymphohistiocytosis (HLH) and macrophage activation syndrome (MAS) are life-threatening hyperinflammatory syndromes typically associated with underlying hematologic and rheumatic diseases, respectively. Familial HLH is associated with genetic cytotoxic impairment and thereby to excessive antigen presentation. Extreme elevation of serum interleukin-18 (IL-18) has been observed specifically in patients with MAS, making it a promising therapeutic target, but how IL-18 promotes hyperinflammation remains unknown. In an adjuvant-induced MAS model, excess IL-18 promoted immunopathology, whereas perforin deficiency had no effect. To determine the effects of excess IL-18 on virus-induced immunopathology, we infected Il18-transgenic (Il18tg) mice with lymphocytic choriomeningitis virus (LCMV; strain Armstrong). LCMV infection is self-limited in wild-type mice, but Prf1−/− mice develop prolonged viremia and fatal HLH. LCMV-infected Il18-transgenic (Il18tg) mice developed cachexia and hyperinflammation comparable to Prf1−/− mice, albeit with minimal mortality. Like Prf1−/− mice, immunopathology was largely rescued by CD8 depletion or interferon-γ (IFNg) blockade. Unlike Prf1−/− mice, they showed normal target cell killing and normal clearance of viral RNA and antigens. Rather than impairing cytotoxicity, excess IL-18 acted on T lymphocytes to amplify their inflammatory responses. Surprisingly, combined perforin deficiency and transgenic IL-18 production caused spontaneous hyperinflammation specifically characterized by CD8 T-cell expansion and improved by IFNg blockade. Even Il18tg;Prf1-haplosufficient mice demonstrated hyperinflammatory features. Thus, excess IL-18 promotes hyperinflammation via an autoinflammatory mechanism distinct from, and synergistic with, cytotoxic impairment. These data establish IL-18 as a potent, independent, and modifiable driver of life-threatening innate and adaptive hyperinflammation and support the rationale for an IL-18–driven subclass of hyperinflammation.

REFERENCES

1.
Risma
KA
,
Marsh
RA
.
Hemophagocytic lymphohistiocytosis: clinical presentations and diagnosis
.
J Allergy Clin Immunol Pract
.
2019
;
7
(
3
):
824
-
832
.
2.
Henderson
LA
,
Canna
SW
,
Schulert
GS
, et al
.
On the alert for cytokine storm: immunopathology in COVID-19
.
Arthritis Rheumatol
.
2020
;
72
(
7
):
1059
-
1063
.
3.
Lykens
JE
,
Terrell
CE
,
Zoller
EE
,
Risma
K
,
Jordan
MB
.
Perforin is a critical physiologic regulator of T-cell activation
.
Blood
.
2011
;
118
(
3
):
618
-
626
.
4.
Jenkins
MR
,
Rudd-Schmidt
JA
,
Lopez
JA
, et al
.
Failed CTL/NK cell killing and cytokine hypersecretion are directly linked through prolonged synapse time
.
J Exp Med
.
2015
;
212
(
3
):
307
-
317
.
5.
Krebs
P
,
Crozat
K
,
Popkin
D
,
Oldstone
MB
,
Beutler
B
.
Disruption of MyD88 signaling suppresses hemophagocytic lymphohistiocytosis in mice
.
Blood
.
2011
;
117
(
24
):
6582
-
6588
.
6.
Jordan
MB
,
Hildeman
D
,
Kappler
J
,
Marrack
P
.
An animal model of hemophagocytic lymphohistiocytosis (HLH): CD8+ T cells and interferon gamma are essential for the disorder
.
Blood
.
2004
;
104
(
3
):
735
-
743
.
7.
Zoller
EE
,
Lykens
JE
,
Terrell
CE
, et al
.
Hemophagocytosis causes a consumptive anemia of inflammation
.
J Exp Med
.
2011
;
208
(
6
):
1203
-
1214
.
8.
Bracaglia
C
,
de Graaf
K
,
Pires Marafon
D
, et al
.
Elevated circulating levels of interferon-γ and interferon-γ-induced chemokines characterise patients with macrophage activation syndrome complicating systemic juvenile idiopathic arthritis
.
Ann Rheum Dis
.
2017
;
76
(
1
):
166
-
172
.
9.
Weiss
ES
,
Girard-Guyonvarc’h
C
,
Holzinger
D
, et al
.
Interleukin-18 diagnostically distinguishes and pathogenically promotes human and murine macrophage activation syndrome
.
Blood
.
2018
;
131
(
13
):
1442
-
1455
.
10.
Lounder
DT
,
Bin
Q
,
de Min
C
,
Jordan
MB
.
Treatment of refractory hemophagocytic lymphohistiocytosis with emapalumab despite severe concurrent infections
.
Blood Adv
.
2019
;
3
(
1
):
47
-
50
.
11.
Jordan
M
,
Locatelli
F
,
Allen
C
, et al;
NI-0501-04 Study Group
.
A novel targeted approach to the treatment of hemophagocytic lymphohistiocytosis (HLH) with an anti-interferon gamma (IFNγ) monoclonal antibody (mAb), NI-0501: first results from a pilot phase 2 study in children with primary HLH
.
Blood
.
2015
;
126
(
23
):
LBA
-
3
.
12.
Schulert
GS
,
Canna
SW
.
Convergent pathways of the hyperferritinemic syndromes
.
Int Immunol
.
2018
;
30
(
5
):
195
-
203
.
13.
Zhang
M
,
Behrens
EM
,
Atkinson
TP
,
Shakoory
B
,
Grom
AA
,
Cron
RQ
.
Genetic defects in cytolysis in macrophage activation syndrome
.
Curr Rheumatol Rep
.
2014
;
16
(
9
):
439
.
14.
Bracaglia
C
,
Sieni
E
,
Da Ros
M
, et al
.
Mutations of familial hemophagocytic lymphohistiocytosis (FHL) related genes and abnormalities of cytotoxicity function tests in patients with macrophage activation syndrome (MAS) occurring in systemic juvenile idiopathic arthritis (sJIA)
.
Ped Rheumatol
.
2014
;
12
(
1
):
53
.
15.
Schulert
GS
,
Zhang
M
,
Fall
N
, et al
.
Whole-exome sequencing reveals mutations in genes linked to hemophagocytic lymphohistiocytosis and macrophage activation syndrome in fatal cases of H1N1 influenza
.
J Infect Dis
.
2016
;
213
(
7
):
1180
-
1188
.
16.
Kawashima
M
,
Yamamura
M
,
Taniai
M
, et al
.
Levels of interleukin-18 and its binding inhibitors in the blood circulation of patients with adult-onset Still’s disease
.
Arthritis Rheum
.
2001
;
44
(
3
):
550
-
560
.
17.
Shimizu
M
,
Yokoyama
T
,
Yamada
K
, et al
.
Distinct cytokine profiles of systemic-onset juvenile idiopathic arthritis-associated macrophage activation syndrome with particular emphasis on the role of interleukin-18 in its pathogenesis
.
Rheumatology (Oxf)
.
2010
;
49
(
9
):
1645
-
1653
.
18.
Yasin
S
,
Fall
N
,
Brown
RA
, et al
.
IL-18 as a biomarker linking systemic juvenile idiopathic arthritis and macrophage activation syndrome
.
Rheumatology (Oxf)
.
2019
;
59
(
2
):
361
-
366
.
19.
Canna
SW
,
de Jesus
AA
,
Gouni
S
, et al
.
An activating NLRC4 inflammasome mutation causes autoinflammation with recurrent macrophage activation syndrome
.
Nat Genet
.
2014
;
46
(
10
):
1140
-
1146
.
20.
Romberg
N
,
Al Moussawi
K
,
Nelson-Williams
C
, et al
.
Mutation of NLRC4 causes a syndrome of enterocolitis and autoinflammation
.
Nat Genet
.
2014
;
46
(
10
):
1135
-
1139
.
21.
Girard-Guyonvarc’h
C
,
Palomo
J
,
Martin
P
, et al
.
Unopposed IL-18 signaling leads to severe TLR9-induced macrophage activation syndrome in mice
.
Blood
.
2018
;
131
(
13
):
1430
-
1441
.
22.
Dinarello
CA
,
Kaplanski
G
.
Indeed, IL-18 is more than an inducer of IFN-γ
.
J Leukoc Biol
.
2018
;
104
(
2
):
237
-
238
.
23.
de Jager
W
,
Vastert
SJ
,
Beekman
JM
, et al
.
Defective phosphorylation of interleukin-18 receptor β causes impaired natural killer cell function in systemic-onset juvenile idiopathic arthritis
.
Arthritis Rheum
.
2009
;
60
(
9
):
2782
-
2793
.
24.
Put
K
,
Vandenhaute
J
,
Avau
A
, et al
.
Inflammatory gene expression profile and defective interferon‐γ and granzyme K in natural killer cells from systemic juvenile idiopathic arthritis patients
.
Arthritis Rheumatol
.
2017
;
69
(
1
):
213
-
224
.
25.
Brisse
E
,
Wouters
CH
,
Matthys
P
.
Hemophagocytic lymphohistiocytosis (HLH): a heterogeneous spectrum of cytokine-driven immune disorders
.
Cytokine Growth Factor Rev
.
2015
;
26
(
3
):
263
-
280
.
26.
Behrens
EM
,
Canna
SW
,
Slade
K
, et al
.
Repeated TLR9 stimulation results in macrophage activation syndrome-like disease in mice
.
J Clin Invest
.
2011
;
121
(
6
):
2264
-
2277
.
27.
McCausland
MM
,
Crotty
S
.
Quantitative PCR technique for detecting lymphocytic choriomeningitis virus in vivo
.
J Virol Methods
.
2008
;
147
(
1
):
167
-
176
.
28.
Buatois
V
,
Chatel
L
,
Cons
L
, et al
.
Use of a mouse model to identify a blood biomarker for IFNγ activity in pediatric secondary hemophagocytic lymphohistiocytosis
.
Translat Res
.
2017
;
180
:
37
-
52
.
29.
Sidhom
J-W
,
Theodros
D
,
Murter
B
, et al
.
ExCYT: a graphical user interface for streamlining analysis of high-dimensional cytometry data
.
J Vis Exp
.
2019
;
143
:
e57473
.
30.
Burn
TN
,
Weaver
L
,
Rood
JE
, et al
.
Genetic deficiency of IFNgamma reveals IFNgamma-independent manifestations of murine hemophagocytic lymphohistiocytosis
.
Arthritis Rheumatol
.
2019
;
72
(
2
):
335
-
347
.
31.
Sepulveda
FE
,
Garrigue
A
,
Maschalidi
S
, et al
.
Polygenic mutations in the cytotoxicity pathway increase susceptibility to develop HLH immunopathology in mice
.
Blood
.
2016
;
127
(
17
):
2113
-
2121
.
32.
Sepulveda
FE
,
Maschalidi
S
,
Vosshenrich
CAJ
, et al
.
A novel immunoregulatory role for NK-cell cytotoxicity in protection from HLH-like immunopathology in mice
.
Blood
.
2015
;
125
(
9
):
1427
-
1434
.
33.
Dinarello
CA
,
Novick
D
,
Kim
S
,
Kaplanski
G
.
Interleukin-18 and IL-18 binding protein
.
Front Immunol
.
2013
;
4
:
289
.
34.
Angelosanto
JM
,
Blackburn
SD
,
Crawford
A
,
Wherry
EJ
.
Progressive loss of memory T cell potential and commitment to exhaustion during chronic viral infection
.
J Virol
.
2012
;
86
(
15
):
8161
-
8170
.
35.
Barber
DL
,
Wherry
EJ
,
Ahmed
R
.
Cutting edge: rapid in vivo killing by memory CD8 T cells
.
J Immunol
.
2003
;
171
(
1
):
27
-
31
.
36.
Benedetti
FD
,
Brogan
P
,
Grom
A
, et al
.
OP0204 emapalumab, an interferon gamma (IFN-Y)-blocking monoclonal antibody, in patients with macrophage activation syndrome (MAS) complicating systemic juvenile idiopathic arthritis (SJIA)
.
Ann Rheum Dis
.
2019
;
78
(
suppl 2
):
178
.
37.
Canna
SW
,
Wrobel
J
,
Chu
N
,
Kreiger
PA
,
Paessler
M
,
Behrens
EM
.
Interferon-γ mediates anemia but is dispensable for fulminant toll-like receptor 9-induced macrophage activation syndrome and hemophagocytosis in mice
.
Arthritis Rheum
.
2013
;
65
(
7
):
1764
-
1775
.
38.
Taylor
MD
,
Burn
TN
,
Wherry
EJ
,
Behrens
EM
.
CD8 T cell memory increases immunopathology in the perforin-deficient model of hemophagocytic lymphohistiocytosis secondary to TNF-α
.
Immunohorizons
.
2018
;
2
(
2
):
67
-
73
.
39.
Brisse
E
,
Imbrechts
M
,
Put
K
, et al
.
Mouse cytomegalovirus infection in BALB/c mice resembles virus-associated secondary hemophagocytic lymphohistiocytosis and shows a pathogenesis distinct from primary hemophagocytic lymphohistiocytosis
.
J Immunol
.
2016
;
196
(
7
):
3124
-
3134
.
40.
Tesi
B
,
Sieni
E
,
Neves
C
, et al
.
Hemophagocytic lymphohistiocytosis in 2 patients with underlying IFN-γ receptor deficiency
.
J Allergy Clin Immunol
.
2015
;
135
(
6
):
1638
-
1641
.
41.
Stepp
SE
,
Dufourcq-Lagelouse
R
,
Le Deist
F
, et al
.
Perforin gene defects in familial hemophagocytic lymphohistiocytosis
.
Science
.
1999
;
286
(
5446
):
1957
-
1959
.
42.
Girard
C
,
Rech
J
,
Brown
M
, et al
.
Elevated serum levels of free interleukin-18 in adult-onset Still’s disease
.
Rheumatology (Oxf)
.
2016
;
55
(
12
):
2237
-
2247
.
43.
Eidt
MV
,
Nunes
FB
,
Pedrazza
L
, et al
.
Biochemical and inflammatory aspects in patients with severe sepsis and septic shock: the predictive role of IL-18 in mortality
.
Clin Chim Acta
.
2016
;
453
:
100
-
106
.
44.
Shakoory
B
,
Carcillo
JA
,
Chatham
WW
, et al
.
Interleukin-1 receptor blockade is associated with reduced mortality in sepsis patients with features of the macrophage activation syndrome: re-analysis of a prior Phase III trial
.
Crit Care Med
.
2016
;
44
(
2
):
275
-
281
.
45.
Kyriazopoulou
E
,
Leventogiannis
K
,
Norrby-Teglund
A
, et al;
Hellenic Sepsis Study Group
.
Macrophage activation-like syndrome: an immunological entity associated with rapid progression to death in sepsis
.
BMC Med
.
2017
;
15
(
1
):
172
.
46.
Wada
T
,
Kanegane
H
,
Ohta
K
, et al
.
Sustained elevation of serum interleukin-18 and its association with hemophagocytic lymphohistiocytosis in XIAP deficiency
.
Cytokine
.
2014
;
65
(
1
):
74
-
78
.
47.
Gernez
Y
,
de Jesus
AA
,
Alsaleem
H
, et al
.
Severe autoinflammation in 4 patients with C-terminal variants in cell division control protein 42 homolog (CDC42) successfully treated with IL-1 inhibition
.
J Allergy Clin Immunol
.
2019
;
144
(
4
):
1122
-
1125
.
48.
Lam
MT
,
Coppola
S
,
Krumbach
OHF
, et al
.
A novel disorder involving dyshematopoiesis, inflammation, and HLH due to aberrant CDC42 function
.
J Exp Med
.
2019
;
216
(
12
):
2778
-
2799
.
49.
Belkaya
S
,
Michailidis
E
,
Korol
CB
, et al
.
Inherited IL-18BP deficiency in human fulminant viral hepatitis
.
J Exp Med
.
2019
;
216
(
8
):
1777
-
1790
.
50.
Canna
SW
,
Girard
C
,
Malle
L
, et al
.
Life-threatening NLRC4-associated hyperinflammation successfully treated with IL-18 inhibition
.
J Allergy Clin Immunol
.
2017
;
139
(
5
):
1698
-
1701
.
51.
Grom
AA
,
Villanueva
J
,
Lee
S
,
Goldmuntz
EA
,
Passo
MH
,
Filipovich
A
.
Natural killer cell dysfunction in patients with systemic-onset juvenile rheumatoid arthritis and macrophage activation syndrome
.
J Pediatr
.
2003
;
142
(
3
):
292
-
296
.
52.
Murali-Krishna
K
,
Altman
JD
,
Suresh
M
, et al
.
Counting antigen-specific CD8 T cells: a reevaluation of bystander activation during viral infection
.
Immunity
.
1998
;
8
(
2
):
177
-
187
.
53.
Wynn
JL
,
Wilson
CS
,
Hawiger
J
, et al
.
Targeting IL-17A attenuates neonatal sepsis mortality induced by IL-18
.
Proc Natl Acad Sci USA
.
2016
;
113
(
19
):
E2627
-
E2635
.
54.
Chen
M
,
Felix
K
,
Wang
J
.
Critical role for perforin and Fas-dependent killing of dendritic cells in the control of inflammation
.
2012
;
119
(
1
):
127
-
136
.
You do not currently have access to this content.

Sign in via your Institution

Sign In