Key Points

  • Rapid uptake of mAb-opsonized cells by macrophages causes persistent reduction of phagocytosis (hypophagia) due to surface Fc receptor loss.

  • Because macrophages are key immune effectors for many therapeutic mAbs, hypophagia could contribute to therapeutic resistance to these mAbs.

Abstract

Macrophage antibody (Ab)-dependent cellular phagocytosis (ADCP) is a major cytotoxic mechanism for both therapeutic unconjugated monoclonal Abs (mAbs) such as rituximab and Ab-induced hemolytic anemia and immune thrombocytopenia. Here, we studied the mechanisms controlling the rate and capacity of macrophages to carry out ADCP in settings of high target/effector cell ratios, such as those seen in patients with circulating tumor burden in leukemic phase disease. Using quantitative live-cell imaging of primary human and mouse macrophages, we found that, upon initial challenge with mAb-opsonized lymphocytes, macrophages underwent a brief burst (<1 hour) of rapid phagocytosis, which was then invariably followed by a sharp reduction in phagocytic activity that could persist for days. This previously unknown refractory period of ADCP, or hypophagia, was observed in all macrophage, mAb, and target cell conditions tested in vitro and was also seen in vivo in Kupffer cells from mice induced to undergo successive rounds of αCD20 mAb-dependent clearance of circulating B cells. Importantly, hypophagia had no effect on Ab-independent phagocytosis and did not alter macrophage viability. In mechanistic studies, we found that the rapid loss of activating Fc receptors from the surface and their subsequent proteolytic degradation were the primary mechanisms responsible for the loss of ADCP activity in hypophagia. These data suggest hypophagia is a critical limiting step in macrophage-mediated clearance of cells via ADCP, and understanding such limitations to innate immune system cytotoxic capacity will aid in the development of mAb regimens that could optimize ADCP and improve patient outcome.

REFERENCES

REFERENCES
1.
Lefebvre
M-L
,
Krause
SW
,
Salcedo
M
,
Nardin
A
.
Ex vivo-activated human macrophages kill chronic lymphocytic leukemia cells in the presence of rituximab: mechanism of antibody-dependent cellular cytotoxicity and impact of human serum
.
J Immunother
.
2006
;
29
(
4
):
388
-
397
.
2.
VanDerMeid
KR
,
Elliott
MR
,
Baran
AM
,
Barr
PM
,
Chu
CC
,
Zent
CS
.
Cellular cytotoxicity of next-generation CD20 monoclonal antibodies
.
Cancer Immunol Res
.
2018
;
6
(
10
):
1150
-
1160
.
3.
Gül
N
,
Babes
L
,
Siegmund
K
, et al
.
Macrophages eliminate circulating tumor cells after monoclonal antibody therapy
.
J Clin Invest
.
2014
;
124
(
2
):
812
-
823
.
4.
Montalvao
F
,
Garcia
Z
,
Celli
S
, et al
.
The mechanism of anti-CD20-mediated B cell depletion revealed by intravital imaging
.
J Clin Invest
.
2013
;
123
(
12
):
5098
-
5103
.
5.
Grandjean
CL
,
Montalvao
F
,
Celli
S
, et al
.
Intravital imaging reveals improved Kupffer cell-mediated phagocytosis as a mode of action of glycoengineered anti-CD20 antibodies
.
Sci Rep
.
2016
;
6
:
34382
.
6.
Weiskopf
K
,
Weissman
IL
.
Macrophages are critical effectors of antibody therapies for cancer
.
MAbs
.
2015
;
7
(
2
):
303
-
310
.
7.
Taylor
RP
,
Lindorfer
MA
.
Cytotoxic mechanisms of immunotherapy: harnessing complement in the action of anti-tumor monoclonal antibodies
.
Semin Immunol
.
2016
;
28
(
3
):
309
-
316
.
8.
Zent
CS
,
Elliott
MR
.
Maxed out macs: physiologic cell clearance as a function of macrophage phagocytic capacity
.
FEBS J
.
2017
;
284
(
7
):
1021
-
1039
.
9.
Matozaki
T
,
Murata
Y
,
Okazawa
H
,
Ohnishi
H
.
Functions and molecular mechanisms of the CD47-SIRPalpha signalling pathway
.
Trends Cell Biol
.
2009
;
19
(
2
):
72
-
80
.
10.
Morrissey
MA
,
Williamson
AP
,
Steinbach
AM
, et al
.
Chimeric antigen receptors that trigger phagocytosis
.
Elife
.
2018
;
7
:
e36688
.
11.
Lehmann
B
,
Biburger
M
,
Brückner
C
, et al
.
Tumor location determines tissue-specific recruitment of tumor-associated macrophages and antibody-dependent immunotherapy response
.
Sci Immunol
.
2017
;
2
(
7
):
eaah6413
.
12.
Gordan
S
,
Albert
H
,
Danzer
H
,
Lux
A
,
Biburger
M
,
Nimmerjahn
F
.
The immunological organ environment dictates the molecular and cellular pathways of cytotoxic antibody activity
.
Cell Rep
.
2019
;
29
(
10
):
3033
-
3046.e4
.
13.
Baig
NA
,
Taylor
RP
,
Lindorfer
MA
, et al
.
Induced resistance to ofatumumab-mediated cell clearance mechanisms, including complement-dependent cytotoxicity, in chronic lymphocytic leukemia
.
J Immunol
.
2014
;
192
(
4
):
1620
-
1629
.
14.
Williams
ME
,
Densmore
JJ
,
Pawluczkowycz
AW
, et al
.
Thrice-weekly low-dose rituximab decreases CD20 loss via shaving and promotes enhanced targeting in chronic lymphocytic leukemia
.
J Immunol
.
2006
;
177
(
10
):
7435
-
7443
.
15.
Beurskens
FJ
,
Lindorfer
MA
,
Farooqui
M
, et al
.
Exhaustion of cytotoxic effector systems may limit monoclonal antibody-based immunotherapy in cancer patients
.
J Immunol
.
2012
;
188
(
7
):
3532
-
3541
.
16.
Wherry
EJ
,
Kurachi
M
.
Molecular and cellular insights into T cell exhaustion
.
Nat Rev Immunol
.
2015
;
15
(
8
):
486
-
499
.
17.
Thommen
DS
,
Schumacher
TN
.
T cell dysfunction in cancer
.
Cancer Cell
.
2018
;
33
(
4
):
547
-
562
.
18.
Erwig
LP
,
Gordon
S
,
Walsh
GM
,
Rees
AJ
.
Previous uptake of apoptotic neutrophils or ligation of integrin receptors downmodulates the ability of macrophages to ingest apoptotic neutrophils
.
Blood
.
1999
;
93
(
4
):
1406
-
1412
.
19.
Cannon
GJ
,
Swanson
JA
.
The macrophage capacity for phagocytosis
.
J Cell Sci
.
1992
;
101
(
Pt 4
):
907
-
913
.
20.
Church
AK
,
VanDerMeid
KR
,
Baig
NA
, et al
.
Anti-CD20 monoclonal antibody-dependent phagocytosis of chronic lymphocytic leukaemia cells by autologous macrophages
.
Clin Exp Immunol
.
2016
;
183
(
1
):
90
-
101
.
21.
Murphy
PS
,
Wang
J
,
Bhagwat
SP
, et al
.
CD73 regulates anti-inflammatory signaling between apoptotic cells and endotoxin-conditioned tissue macrophages
.
Cell Death Differ
.
2017
;
24
(
3
):
559
-
570
.
22.
Stevenson
C
,
de la Rosa
G
,
Anderson
CS
, et al
.
Essential role of Elmo1 in Dock2-dependent lymphocyte migration
.
J Immunol
.
2014
;
192
(
12
):
6062
-
6070
.
23.
Keeney
M
,
Gratama
JW
,
Chin-Yee
IH
,
Sutherland
DR
.
Isotype controls in the analysis of lymphocytes and CD34+ stem and progenitor cells by flow cytometry—time to let go!
.
Cytometry
.
1998
;
34
(
6
):
280
-
283
.
24.
Hulspas
R
,
O’Gorman
MRG
,
Wood
BL
,
Gratama
JW
,
Sutherland
DR
.
Considerations for the control of background fluorescence in clinical flow cytometry
.
Cytometry B Clin Cytom
.
2009
;
76
(
6
):
355
-
364
.
25.
Andersen
MN
,
Al-Karradi
SNH
,
Kragstrup
TW
,
Hokland
M
.
Elimination of erroneous results in flow cytometry caused by antibody binding to Fc receptors on human monocytes and macrophages
.
Cytometry A
.
2016
;
89
(
11
):
1001
-
1009
.
26.
Chu
CC
,
Pinney
JJ
,
Whitehead
HE
, et al
.
High-resolution quantitation of discrete phagocytic events by live cell time-lapse high-content microscopy imaging
.
J Cell Sci
.
2020
;
133
(
5
):
jcs237883
.
27.
Mancardi
DA
,
Albanesi
M
,
Jönsson
F
, et al
.
The high-affinity human IgG receptor FcγRI (CD64) promotes IgG-mediated inflammation, anaphylaxis, and antitumor immunotherapy
.
Blood
.
2013
;
121
(
9
):
1563
-
1573
.
28.
Bruhns
P
,
Jönsson
F
.
Mouse and human FcR effector functions
.
Immunol Rev
.
2015
;
268
(
1
):
25
-
51
.
29.
Herter
S
,
Herting
F
,
Mundigl
O
, et al
.
Preclinical activity of the type II CD20 antibody GA101 (obinutuzumab) compared with rituximab and ofatumumab in vitro and in xenograft models
.
Mol Cancer Ther
.
2013
;
12
(
10
):
2031
-
2042
.
30.
Taylor
RP
,
Lindorfer
MA
.
Fcγ-receptor-mediated trogocytosis impacts mAb-based therapies: historical precedence and recent developments
.
Blood
.
2015
;
125
(
5
):
762
-
766
.
31.
Coiffier
B
,
Lepage
E
,
Briere
J
, et al
.
CHOP chemotherapy plus rituximab compared with CHOP alone in elderly patients with diffuse large-B-cell lymphoma
.
N Engl J Med
.
2002
;
346
(
4
):
235
-
242
.
32.
Hallek
M
,
Fischer
K
,
Fingerle-Rowson
G
, et al;
German Chronic Lymphocytic Leukaemia Study Group
.
Addition of rituximab to fludarabine and cyclophosphamide in patients with chronic lymphocytic leukaemia: a randomised, open-label, phase 3 trial
.
Lancet
.
2010
;
376
(
9747
):
1164
-
1174
.
33.
Edwards
JCW
,
Szczepanski
L
,
Szechinski
J
, et al
.
Efficacy of B-cell-targeted therapy with rituximab in patients with rheumatoid arthritis
.
N Engl J Med
.
2004
;
350
(
25
):
2572
-
2581
.
34.
Madisen
L
,
Zwingman
TA
,
Sunkin
SM
, et al
.
A robust and high-throughput Cre reporting and characterization system for the whole mouse brain
.
Nat Neurosci
.
2010
;
13
(
1
):
133
-
140
.
35.
Green
DR
,
Oguin
TH
,
Martinez
J
.
The clearance of dying cells: table for two
.
Cell Death Differ
.
2016
;
23
(
6
):
915
-
926
.
36.
Kiefer
F
,
Brumell
J
,
Al-Alawi
N
, et al
.
The Syk protein tyrosine kinase is essential for Fcgamma receptor signaling in macrophages and neutrophils
.
Mol Cell Biol
.
1998
;
18
(
7
):
4209
-
4220
.
37.
Mellman
IS
,
Plutner
H
,
Steinman
RM
,
Unkeless
JC
,
Cohn
ZA
.
Internalization and degradation of macrophage Fc receptors during receptor-mediated phagocytosis
.
J Cell Biol
.
1983
;
96
(
3
):
887
-
895
.
38.
Zhang
CY
,
Booth
JW
.
Divergent intracellular sorting of FcγRIIA and FcγRIIB2
.
J Biol Chem
.
2010
;
285
(
44
):
34250
-
34258
.
39.
Molfetta
R
,
Quatrini
L
,
Gasparrini
F
,
Zitti
B
,
Santoni
A
,
Paolini
R
.
Regulation of fc receptor endocytic trafficking by ubiquitination
.
Front Immunol
.
2014
;
5
:
449
.
40.
Qureshi
OS
,
Rowley
TF
,
Junker
F
, et al
.
Multivalent Fcγ-receptor engagement by a hexameric Fc-fusion protein triggers Fcγ-receptor internalisation and modulation of Fcγ-receptor functions
.
Sci Rep
.
2017
;
7
(
1
):
17049
.
41.
Gautier
EL
,
Shay
T
,
Miller
J
, et al;
Immunological Genome Consortium
.
Gene-expression profiles and transcriptional regulatory pathways that underlie the identity and diversity of mouse tissue macrophages
.
Nat Immunol
.
2012
;
13
(
11
):
1118
-
1128
.
42.
Pearse
RN
,
Feinman
R
,
Ravetch
JV
.
Characterization of the promoter of the human gene encoding the high-affinity IgG receptor: transcriptional induction by gamma-interferon is mediated through common DNA response elements
.
Proc Natl Acad Sci USA
.
1991
;
88
(
24
):
11305
-
11309
.
43.
Yancey
KB
,
O’Shea
J
,
Chused
T
, et al
.
Human C5a modulates monocyte Fc and C3 receptor expression
.
J Immunol
.
1985
;
135
(
1
):
465
-
470
.
44.
Biburger
M
,
Aschermann
S
,
Schwab
I
, et al
.
Monocyte subsets responsible for immunoglobulin G-dependent effector functions in vivo
.
Immunity
.
2011
;
35
(
6
):
932
-
944
.
45.
Scott
CL
,
Zheng
F
,
De Baetselier
P
, et al
.
Bone marrow-derived monocytes give rise to self-renewing and fully differentiated Kupffer cells
.
Nat Commun
.
2016
;
7
:
10321
.
46.
Krenkel
O
,
Tacke
F
.
Liver macrophages in tissue homeostasis and disease
.
Nat Rev Immunol
.
2017
;
17
(
5
):
306
-
321
.
47.
Blériot
C
,
Ginhoux
F
.
Understanding the heterogeneity of resident liver macrophages
.
Front Immunol
.
2019
;
10
:
2694
.
48.
Hainsworth
JD
,
Litchy
S
,
Barton
JH
, et al;
Minnie Pearl Cancer Research Network
.
Single-agent rituximab as first-line and maintenance treatment for patients with chronic lymphocytic leukemia or small lymphocytic lymphoma: a phase II trial of the Minnie Pearl Cancer Research Network
.
J Clin Oncol
.
2003
;
21
(
9
):
1746
-
1751
.
49.
Roghanian
A
,
Teige
I
,
Mårtensson
L
, et al
.
Antagonistic human FcγRIIB (CD32B) antibodies have anti-tumor activity and overcome resistance to antibody therapy in vivo
.
Cancer Cell
.
2015
;
27
(
4
):
473
-
488
.
50.
Kasahara
Y
,
Shirota
H
,
Umegaki
S
,
Ishioka
C
.
Contribution of Fcγ receptor IIB to creating a suppressive tumor microenvironment in a mouse model
.
Cancer Immunol Immunother
.
2019
;
68
(
11
):
1769
-
1778
.
51.
Clynes
RA
,
Towers
TL
,
Presta
LG
,
Ravetch
JV
.
Inhibitory Fc receptors modulate in vivo cytoxicity against tumor targets
.
Nat Med
.
2000
;
6
(
4
):
443
-
446
.
52.
Flannagan
RS
,
Jaumouillé
V
,
Grinstein
S
.
The cell biology of phagocytosis
.
Annu Rev Pathol
.
2012
;
7
:
61
-
98
.
53.
Freeman
SA
,
Goyette
J
,
Furuya
W
, et al
.
Integrins form an expanding diffusional barrier that coordinates phagocytosis
.
Cell
.
2016
;
164
(
1-2
):
128
-
140
.
54.
Lopes
FB
,
Bálint
Š
,
Valvo
S
, et al
.
Membrane nanoclusters of FcγRI segregate from inhibitory SIRPα upon activation of human macrophages
.
J Cell Biol
.
2017
;
216
(
4
):
1123
-
1141
.
55.
Tipton
TRW
,
Mockridge
CI
,
French
RR
,
Tutt
AL
,
Cragg
MS
,
Beers
SA
.
Anti-mouse FcγRIV antibody 9E9 also blocks FcγRIII in vivo
.
Blood
.
2015
;
126
(
24
):
2643
-
2645
.
56.
Weng
W-K
,
Levy
R
.
Two immunoglobulin G fragment C receptor polymorphisms independently predict response to rituximab in patients with follicular lymphoma
.
J Clin Oncol
.
2003
;
21
(
21
):
3940
-
3947
.
57.
Richards
JO
,
Karki
S
,
Lazar
GA
,
Chen
H
,
Dang
W
,
Desjarlais
JR
.
Optimization of antibody binding to FcgammaRIIa enhances macrophage phagocytosis of tumor cells
.
Mol Cancer Ther
.
2008
;
7
(
8
):
2517
-
2527
.
58.
Minard-Colin
V
,
Xiu
Y
,
Poe
JC
, et al
.
Lymphoma depletion during CD20 immunotherapy in mice is mediated by macrophage FcgammaRI, FcgammaRIII, and FcgammaRIV
.
Blood
.
2008
;
112
(
4
):
1205
-
1213
.
59.
Otten
MA
,
van der Bij
GJ
,
Verbeek
SJ
, et al
.
Experimental antibody therapy of liver metastases reveals functional redundancy between Fc gammaRI and Fc gammaRIV
.
J Immunol
.
2008
;
181
(
10
):
6829
-
6836
.
60.
Fairchild
KD
,
Hudson
RG
,
Douglas
SD
,
McKenzie
SE
,
Polin
RA
.
Effect of gamma interferon on expression of Fc gamma receptors in monocytes of newborn infants and adults
.
Clin Diagn Lab Immunol
.
1996
;
3
(
4
):
464
-
469
.
61.
Petroni
KC
,
Shen
L
,
Guyre
PM
.
Modulation of human polymorphonuclear leukocyte IgG Fc receptors and Fc receptor-mediated functions by IFN-gamma and glucocorticoids
.
J Immunol
.
1988
;
140
(
10
):
3467
-
3472
.
62.
Sellge
G
,
Barkowsky
M
,
Kramer
S
, et al
.
Interferon-γ regulates growth and controls Fcγ receptor expression and activation in human intestinal mast cells
.
BMC Immunol
.
2014
;
15
:
27
-
10
.
63.
Erbe
DV
,
Collins
JE
,
Shen
L
,
Graziano
RF
,
Fanger
MW
.
The effect of cytokines on the expression and function of Fc receptors for IgG on human myeloid cells
.
Mol Immunol
.
1990
;
27
(
1
):
57
-
67
.
64.
Pricop
L
,
Redecha
P
,
Teillaud
JL
, et al
.
Differential modulation of stimulatory and inhibitory Fc gamma receptors on human monocytes by Th1 and Th2 cytokines
.
J Immunol
.
2001
;
166
(
1
):
531
-
537
.
65.
Hulett
MD
,
Hogarth
PM
.
The second and third extracellular domains of FcgammaRI (CD64) confer the unique high affinity binding of IgG2a
.
Mol Immunol
.
1998
;
35
(
14-15
):
989
-
996
.
You do not currently have access to this content.

Sign in via your Institution

Sign In