Key Points

  • Increased EPO sensitivity or activity improves erythropoiesis in β-thalassemia.

  • Combinatorial use of erythroid-stimulating agents and erythroid iron restriction agents correct anemia in β-thalassemia.

Abstract

β-Thalassemia intermedia is a disorder characterized by ineffective erythropoiesis (IE), anemia, splenomegaly, and systemic iron overload. Novel approaches are being explored based on the modulation of pathways that reduce iron absorption (ie, using hepcidin activators like Tmprss6-antisense oligonucleotides [ASOs]) or increase erythropoiesis (by erythropoietin [EPO] administration or modulating the ability of transferrin receptor 2 [Tfr2] to control red blood cell [RBC] synthesis). Targeting Tmprss6 messenger RNA by Tmprss6-ASO was proven to be effective in improving IE and splenomegaly by inducing iron restriction. However, we postulated that combinatorial strategies might be superior to single therapies. Here, we combined Tmprss6-ASO with EPO administration or removal of a single Tfr2 allele in the bone marrow of animals affected by β-thalassemia intermedia (Hbbth3/+). EPO administration alone or removal of a single Tfr2 allele increased hemoglobin levels and RBCs. However, EPO or Tfr2 single-allele deletion alone, respectively, exacerbated or did not improve splenomegaly in β-thalassemic mice. To overcome this issue, we postulated that some level of iron restriction (by targeting Tmprss6) would improve splenomegaly while preserving the beneficial effects on RBC production mediated by EPO or Tfr2 deletion. While administration of Tmprss6-ASO alone improved the anemia, the combination of Tmprss6-ASO + EPO or Tmprss6-ASO + Tfr2 single-allele deletion produced significantly higher hemoglobin levels and reduced splenomegaly. In conclusion, our results clearly indicate that these combinatorial approaches are superior to single treatments in ameliorating IE and anemia in β-thalassemia and could provide guidance to translate some of these approaches into viable therapies.

REFERENCES

1.
Oikonomidou
PR
,
Rivella
S
.
What can we learn from ineffective erythropoiesis in thalassemia?
Blood Rev
.
2018
;
32
(
2
):
130
-
143
.
2.
Taher
AT
,
Weatherall
DJ
,
Cappellini
MD
.
Thalassaemia
.
Lancet
.
2017
;
391
(
10116
):
155
-
167
.
3.
Rivella
S
.
β-thalassemias: paradigmatic diseases for scientific discoveries and development of innovative therapies
.
Haematologica
.
2015
;
100
(
4
):
418
-
430
.
4.
Rivella
S
.
Iron metabolism under conditions of ineffective erythropoiesis in β-thalassemia
.
Blood
.
2019
;
133
(
1
):
51
-
58
.
5.
Gupta
R
,
Musallam
KM
,
Taher
AT
,
Rivella
S
.
Ineffective erythropoiesis: anemia and iron overload
.
Hematol Oncol Clin North Am
.
2018
;
32
(
2
):
213
-
221
.
6.
Yuan
J
,
Kannan
R
,
Shinar
E
,
Rachmilewitz
EA
,
Low
PS
.
Isolation, characterization, and immunoprecipitation studies of immune complexes from membranes of beta-thalassemic erythrocytes
.
Blood
.
1992
;
79
(
11
):
3007
-
3013
.
7.
Rachmilewitz
EA
.
Formation of hemichromes from oxidized hemoglobin subunits
.
Ann N Y Acad Sci
.
1969
;
165
(
1
):
171
-
184
.
8.
Melchiori
L
,
Gardenghi
S
,
Rivella
S
.
Beta-thalassemia: HiJAKing ineffective erythropoiesis and iron overload
.
Adv Hematol
.
2010
;
2010
:
938640
.
9.
Forster
L
,
Cornwall
S
,
Finlayson
J
,
Ghassemifar
R
.
Cell cycle, proliferation and apoptosis in erythroblasts cultured from patients with β-thalassaemia major
.
Br J Haematol
.
2016
;
175
(
3
):
539
-
542
.
10.
Kautz
L
,
Jung
G
,
Du
X
, et al
.
Erythroferrone contributes to hepcidin suppression and iron overload in a mouse model of β-thalassemia
.
Blood
.
2015
;
126
(
17
):
2031
-
2037
.
11.
Kautz
L
,
Jung
G
,
Valore
EV
,
Rivella
S
,
Nemeth
E
,
Ganz
T
.
Identification of erythroferrone as an erythroid regulator of iron metabolism [published correction appears in Nat Genet. 2020;52(4):463]
.
Nat Genet
.
2014
;
46
(
7
):
678
-
684
.
12.
Anderson
ER
,
Taylor
M
,
Xue
X
, et al
.
Intestinal HIF2α promotes tissue-iron accumulation in disorders of iron overload with anemia
.
Proc Natl Acad Sci USA
.
2013
;
110
(
50
):
E4922
-
E4930
.
13.
Bou-Fakhredin
R
,
Bazarbachi
AH
,
Chaya
B
,
Sleiman
J
,
Cappellini
MD
,
Taher
AT
.
Iron overload and chelation therapy in non-transfusion dependent thalassemia
.
Int J Mol Sci
.
2017
;
18
(
12
):
E2778
.
14.
Sleiman
J
,
Tarhini
A
,
Bou-Fakhredin
R
,
Saliba
AN
,
Cappellini
MD
,
Taher
AT
.
Non-transfusion-dependent thalassemia: an update on complications and management
.
Int J Mol Sci
.
2018
;
19
(
1
):
E182
.
15.
Casu
C
,
Aghajan
M
,
Oikonomidou
PR
,
Guo
S
,
Monia
BP
,
Rivella
S
.
Combination of Tmprss6- ASO and the iron chelator deferiprone improves erythropoiesis and reduces iron overload in a mouse model of beta-thalassemia intermedia
.
Haematologica
.
2016
;
101
(
1
):
e8
-
e11
.
16.
Casu
C
,
Chessa
R
,
Liu
A
, et al
.
Minihepcidins improve ineffective erythropoiesis and splenomegaly in a new mouse model of adult beta-thalassemia major
.
Haematologica
.
2019
;
haematol.2018.212589
.
17.
Casu
C
,
Oikonomidou
PR
,
Chen
H
, et al
.
Minihepcidin peptides as disease modifiers in mice affected by β-thalassemia and polycythemia vera
.
Blood
.
2016
;
128
(
2
):
265
-
276
.
18.
Guo
S
,
Casu
C
,
Gardenghi
S
, et al
.
Reducing TMPRSS6 ameliorates hemochromatosis and β-thalassemia in mice
.
J Clin Invest
.
2013
;
123
(
4
):
1531
-
1541
.
19.
Schmidt
PJ
,
Toudjarska
I
,
Sendamarai
AK
, et al
.
An RNAi therapeutic targeting Tmprss6 decreases iron overload in Hfe(-/-) mice and ameliorates anemia and iron overload in murine β-thalassemia intermedia
.
Blood
.
2013
;
121
(
7
):
1200
-
1208
.
20.
Liu
J
,
Liu
W
,
Liu
Y
, et al
.
New thiazolidinones reduce iron overload in mouse models of hereditary hemochromatosis and β-thalassemia
.
Haematologica
.
2019
;
104
(
9
):
1768
-
1781
.
21.
Manolova
V
,
Nyffenegger
N
,
Flace
A
, et al
.
Oral ferroportin inhibitor ameliorates ineffective erythropoiesis in a model of β-thalassemia
.
J Clin Invest
.
2019
;
130
(
1
):
491
-
506
.
22.
Schmidt
PJ
,
Racie
T
,
Westerman
M
,
Fitzgerald
K
,
Butler
JS
,
Fleming
MD
.
Combination therapy with a Tmprss6 RNAi-therapeutic and the oral iron chelator deferiprone additively diminishes secondary iron overload in a mouse model of β-thalassemia intermedia
.
Am J Hematol
.
2015
;
90
(
4
):
310
-
313
.
23.
Nai
A
,
Pagani
A
,
Mandelli
G
, et al
.
Deletion of TMPRSS6 attenuates the phenotype in a mouse model of β-thalassemia
.
Blood
.
2012
;
119
(
21
):
5021
-
5029
.
24.
Shapir
N
,
Miari
R
,
Blum
S
, et al
.
Preclinical and preliminary clinical evaluation of genetically transduced dermal tissue implants for the sustained secretion of erythropoietin and interferon α
.
Hum Gene Ther Clin Dev
.
2015
;
26
(
4
):
216
-
227
.
25.
Artuso
I
,
Lidonnici
MR
,
Altamura
S
, et al
.
Transferrin receptor 2 is a potential novel therapeutic target for β-thalassemia: evidence from a murine model [published correction appears in Blood. 2019;134(1):94]
.
Blood
.
2018
;
132
(
21
):
2286
-
2297
.
26.
Nai
A
,
Lidonnici
MR
,
Rausa
M
, et al
.
The second transferrin receptor regulates red blood cell production in mice
.
Blood
.
2015
;
125
(
7
):
1170
-
1179
.
27.
Nai
A
,
Pellegrino
RM
,
Rausa
M
, et al
.
The erythroid function of transferrin receptor 2 revealed by Tmprss6 inactivation in different models of transferrin receptor 2 knockout mice
.
Haematologica
.
2014
;
99
(
6
):
1016
-
1021
.
28.
Silvestri
L
,
Nai
A
,
Pagani
A
,
Camaschella
C
.
The extrahepatic role of TFR2 in iron homeostasis
.
Front Pharmacol
.
2014
;
5
:
93
.
29.
Yang
B
,
Kirby
S
,
Lewis
J
,
Detloff
PJ
,
Maeda
N
,
Smithies
O
.
A mouse model for beta 0-thalassemia
.
Proc Natl Acad Sci USA
.
1995
;
92
(
25
):
11608
-
11612
.
30.
Roetto
A
,
Di Cunto
F
,
Pellegrino
RM
, et al
.
Comparison of 3 Tfr2-deficient murine models suggests distinct functions for Tfr2-alpha and Tfr2-beta isoforms in different tissues
.
Blood
.
2010
;
115
(
16
):
3382
-
3389
.
31.
Crooke
ST
,
Baker
BF
,
Xia
S
, et al
.
integrated assessment of the clinical performance of galnac3-conjugated 2′-o-methoxyethyl chimeric antisense oligonucleotides: I. Human volunteer experience
.
Nucleic Acid Ther
.
2019
;
29
(
1
):
16
-
32
.
32.
Prakash
TP
,
Graham
MJ
,
Yu
J
, et al
.
Targeted delivery of antisense oligonucleotides to hepatocytes using triantennary N-acetyl galactosamine improves potency 10-fold in mice
.
Nucleic Acids Res
.
2014
;
42
(
13
):
8796
-
8807
.
33.
Khalil
S
,
Delehanty
L
,
Grado
S
, et al
.
Iron modulation of erythropoiesis is associated with Scribble-mediated control of the erythropoietin receptor
.
J Exp Med
.
2018
;
215
(
2
):
661
-
679
.
34.
Amer
J
,
Dana
M
,
Fibach
E
.
The antioxidant effect of erythropoietin on thalassemic blood cells
.
Anemia
.
2010
;
2010
:
978710
.
35.
Asadov
C
,
Alimirzoyeva
Z
,
Hasanova
M
,
Mammadova
T
,
Shirinova
A
.
Clinical application of recombinant erythropoietin in beta-thalassaemia intermedia
.
Georgian Med News
.
2016
;(
255
):
86
-
92
.
36.
Bourantas
K
,
Economou
G
,
Georgiou
J
.
Administration of high doses of recombinant human erythropoietin to patients with beta-thalassemia intermedia: a preliminary trial
.
Eur J Haematol
.
1997
;
58
(
1
):
22
-
25
.
37.
Chaidos
A
,
Makis
A
,
Hatzimichael
E
, et al
.
Treatment of beta-thalassemia patients with recombinant human erythropoietin: effect on transfusion requirements and soluble adhesion molecules
.
Acta Haematol
.
2004
;
111
(
4
):
189
-
195
.
38.
Nişli
G
,
Kavakli
K
,
Vergin
C
,
Oztop
S
,
Cetingül
N
.
Recombinant human erythropoietin trial in thalassemia intermedia
.
J Trop Pediatr
.
1996
;
42
(
6
):
330
-
334
.
39.
Olivieri
NF
,
Freedman
MH
,
Perrine
SP
, et al
.
Trial of recombinant human erythropoietin: three patients with thalassemia intermedia
.
Blood
.
1992
;
80
(
12
):
3258
-
3260
.
40.
Rachmilewitz
EA
,
Aker
M
.
The role of recombinant human erythropoietin in the treatment of thalassemia
.
Ann N Y Acad Sci
.
1998
;
850
(
1 COOLEY’S ANEM
):
129
-
138
.
41.
Borgna-Pignatti
C
.
Modern treatment of thalassaemia intermedia
.
Br J Haematol
.
2007
;
138
(
3
):
291
-
304
.
42.
Singbartl
G
.
Adverse events of erythropoietin in long-term and in acute/short-term treatment
.
Clin Investig
.
1994
;
72
(
suppl 6
):
S36
-
S43
.
You do not currently have access to this content.

Sign in via your Institution

Sign In