Key Points

  • High GDF-15 levels are robustly associated with an increased risk of VTE.

  • MR reveals that GDF-15 is a risk marker rather than a causal risk factor for VTE.

Abstract

Growth differentiation factor 15 (GDF-15), a marker of inflammation and oxidative stress, has emerged as a biomarker for arterial cardiovascular disease. However, the association between GDF-15 and venous thromboembolism (VTE) remains uncertain. We therefore investigated the association between plasma GDF-15 levels and future risk of incident VTE and explored the potential of a causal association using Mendelian randomization (MR). We conducted a population-based nested case-control study comprising 416 VTE patients and 848 age- and sex-matched controls derived from the Tromsø Study. Logistic regression was used to calculate odds ratios (ORs) for VTE across GDF-15 quartiles. For the MR, we used data from the International Network on Venous Thrombosis (INVENT) consortium to examine whether single nucleotide polymorphisms (SNPs) associated with GDF-15 levels with genome-wide significance were related to VTE. We found that the ORs for VTE increased across GDF-15 quartiles (Ptrend = .002). Participants with GDF-15 values in the highest quartile (≥358 pg/mL) had an OR for VTE of 2.05 (95% confidence interval, 1.37-3.08) compared with those with GDF-15 in the lowest quartile (<200 pg/mL) in the age- and sex-adjusted model. ORs remained essentially the same after further adjustment for body mass index, smoking, hormone therapy, physical activity, and C-reactive protein. Similar results were obtained for provoked/unprovoked events, deep vein thrombosis, and pulmonary embolism. GDF-15 levels, as predicted by the SNPs, were not associated with VTE in MR. Our results indicate that high GDF-15 levels are associated with increased risk of VTE, but MR suggests that this association is not causal.

REFERENCES

REFERENCES
1.
Naess
IA
,
Christiansen
SC
,
Romundstad
P
,
Cannegieter
SC
,
Rosendaal
FR
,
Hammerstrøm
J
.
Incidence and mortality of venous thrombosis: a population-based study
.
J Thromb Haemost
.
2007
;
5
(
4
):
692
-
699
.
2.
Schulman
S
,
Lindmarker
P
,
Holmström
M
, et al
.
Post-thrombotic syndrome, recurrence, and death 10 years after the first episode of venous thromboembolism treated with warfarin for 6 weeks or 6 months
.
J Thromb Haemost
.
2006
;
4
(
4
):
734
-
742
.
3.
Schmidt
M
,
Jacobsen
JB
,
Lash
TL
,
Bøtker
HE
,
Sørensen
HT
.
25 year trends in first time hospitalisation for acute myocardial infarction, subsequent short and long term mortality, and the prognostic impact of sex and comorbidity: a Danish nationwide cohort study
.
BMJ
.
2012
;
344
:
e356
.
4.
Mannsverk
J
,
Wilsgaard
T
,
Mathiesen
EB
, et al
.
Trends in modifiable risk factors are associated with declining incidence of hospitalized and nonhospitalized acute coronary heart disease in a population
.
Circulation
.
2016
;
133
(
1
):
74
-
81
.
5.
Vangen-Lønne
AM
,
Wilsgaard
T
,
Johnsen
SH
,
Løchen
ML
,
Njølstad
I
,
Mathiesen
EB
.
Declining incidence of ischemic stroke: What is the impact of changing risk factors? The Tromsø Study 1995 to 2012
.
Stroke
.
2017
;
48
(
3
):
544
-
550
.
6.
Huang
W
,
Goldberg
RJ
,
Anderson
FA
,
Kiefe
CI
,
Spencer
FA
.
Secular trends in occurrence of acute venous thromboembolism: the Worcester VTE study (1985-2009)
.
Am J Med
.
2014
;
127
(
9
):
829
-
839.e5
.
7.
Arshad
N
,
Isaksen
T
,
Hansen
JB
,
Brækkan
SK
.
Time trends in incidence rates of venous thromboembolism in a large cohort recruited from the general population
.
Eur J Epidemiol
.
2017
;
32
(
4
):
299
-
305
.
8.
Münster
AM
,
Rasmussen
TB
,
Falstie-Jensen
AM
, et al
.
A changing landscape: Temporal trends in incidence and characteristics of patients hospitalized with venous thromboembolism 2006-2015
.
Thromb Res
.
2019
;
176
:
46
-
53
.
9.
Stein
PD
,
Hull
RD
,
Kayali
F
,
Ghali
WA
,
Alshab
AK
,
Olson
RE
.
Venous thromboembolism according to age: the impact of an aging population
.
Arch Intern Med
.
2004
;
164
(
20
):
2260
-
2265
.
10.
Ng
M
,
Fleming
T
,
Robinson
M
, et al
.
Global, regional, and national prevalence of overweight and obesity in children and adults during 1980-2013: a systematic analysis for the Global Burden of Disease Study 2013
.
Lancet
.
2014
;
384
(
9945
):
766
-
781
.
11.
Bray
F
,
Ferlay
J
,
Soerjomataram
I
,
Siegel
RL
,
Torre
LA
,
Jemal
A
.
Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries
.
CA Cancer J Clin
.
2018
;
68
(
6
):
394
-
424
.
12.
Bootcov
MR
,
Bauskin
AR
,
Valenzuela
SM
, et al
.
MIC-1, a novel macrophage inhibitory cytokine, is a divergent member of the TGF-beta superfamily
.
Proc Natl Acad Sci U S A
.
1997
;
94
(
21
):
11514
-
11519
.
13.
Schlittenhardt
D
,
Schober
A
,
Strelau
J
, et al
.
Involvement of growth differentiation factor-15/macrophage inhibitory cytokine-1 (GDF-15/MIC-1) in oxLDL-induced apoptosis of human macrophages in vitro and in arteriosclerotic lesions
.
Cell Tissue Res
.
2004
;
318
(
2
):
325
-
333
.
14.
Fairlie
WD
,
Moore
AG
,
Bauskin
AR
,
Russell
PK
,
Zhang
HP
,
Breit
SN
.
MIC-1 is a novel TGF-beta superfamily cytokine associated with macrophage activation
.
J Leukoc Biol
.
1999
;
65
(
1
):
2
-
5
.
15.
Brown
DA
,
Breit
SN
,
Buring
J
, et al
.
Concentration in plasma of macrophage inhibitory cytokine-1 and risk of cardiovascular events in women: a nested case-control study
.
Lancet
.
2002
;
359
(
9324
):
2159
-
2163
.
16.
Xu
J
,
Kimball
TR
,
Lorenz
JN
, et al
.
GDF15/MIC-1 functions as a protective and antihypertrophic factor released from the myocardium in association with SMAD protein activation
.
Circ Res
.
2006
;
98
(
3
):
342
-
350
.
17.
Ago
T
,
Sadoshima
J
.
GDF15, a cardioprotective TGF-beta superfamily protein
.
Circ Res
.
2006
;
98
(
3
):
294
-
297
.
18.
Wollert
KC
,
Kempf
T
,
Wallentin
L
.
Growth differentiation factor 15 as a biomarker in cardiovascular disease
.
Clin Chem
.
2017
;
63
(
1
):
140
-
151
.
19.
Wallentin
L
,
Hijazi
Z
,
Andersson
U
, et al;
ARISTOTLE Investigators
.
Growth differentiation factor 15, a marker of oxidative stress and inflammation, for risk assessment in patients with atrial fibrillation: insights from the Apixaban for Reduction in Stroke and Other Thromboembolic Events in Atrial Fibrillation (ARISTOTLE) trial
.
Circulation
.
2014
;
130
(
21
):
1847
-
1858
.
20.
Duran
L
,
Kayhan
S
,
Guzel
A
, et al
.
The prognostic values of GDF-15 in comparison with NT-proBNP in patients with normotensive acute pulmonary embolism
.
Clin Lab
.
2014
;
60
(
8
):
1365
-
1371
.
21.
Lankeit
M
,
Kempf
T
,
Dellas
C
, et al
.
Growth differentiation factor-15 for prognostic assessment of patients with acute pulmonary embolism
.
Am J Respir Crit Care Med
.
2008
;
177
(
9
):
1018
-
1025
.
22.
Puurunen
MK
,
Enserro
D
,
Xanthakis
V
, et al
.
Biomarkers for the prediction of venous thromboembolism in the community
.
Thromb Res
.
2016
;
145
:
34
-
39
.
23.
Mackman
N
.
New insights into the mechanisms of venous thrombosis
.
J Clin Invest
.
2012
;
122
(
7
):
2331
-
2336
.
24.
Dayal
S
,
Wilson
KM
,
Motto
DG
,
Miller
FJ
Jr.
,
Chauhan
AK
,
Lentz
SR
.
Hydrogen peroxide promotes aging-related platelet hyperactivation and thrombosis
.
Circulation
.
2013
;
127
(
12
):
1308
-
1316
.
25.
Jacobsen
BK
,
Eggen
AE
,
Mathiesen
EB
,
Wilsgaard
T
,
Njølstad
I
.
Cohort profile: the Tromso Study
.
Int J Epidemiol
.
2012
;
41
(
4
):
961
-
967
.
26.
Braekkan
SK
,
Borch
KH
,
Mathiesen
EB
,
Njølstad
I
,
Wilsgaard
T
,
Hansen
JB
.
Body height and risk of venous thromboembolism: The Tromsø Study
.
Am J Epidemiol
.
2010
;
171
(
10
):
1109
-
1115
.
27.
Høiland
II
,
Liang
RA
,
Braekkan
SK
, et al
.
Complement activation assessed by the plasma terminal complement complex and future risk of venous thromboembolism
.
J Thromb Haemost
.
2019
;
17
(
6
):
934
-
943
.
28.
Liang
RA
,
Høiland
II
,
Ueland
T
, et al
.
Plasma levels of mannose-binding lectin and future risk of venous thromboembolism
.
J Thromb Haemost
.
2019
;
17
(
10
):
1661
-
1669
.
29.
Bennick
A
,
Haddeland
U
,
Brosstad
F
.
D-dimer specific monoclonal antibodies react with fibrinogen aggregates
.
Thromb Res
.
1996
;
82
(
2
):
169
-
176
.
30.
Mimeault
M
,
Batra
SK
.
Divergent molecular mechanisms underlying the pleiotropic functions of macrophage inhibitory cytokine-1 in cancer
.
J Cell Physiol
.
2010
;
224
(
3
):
626
-
635
.
31.
Rinde
LB
,
Småbrekke
B
,
Mathiesen
EB
, et al
.
Ischemic stroke and risk of venous thromboembolism in the general population: The Tromsø Study
.
J Am Heart Assoc
.
2016
;
5
(
11
):
e004311
.
32.
Rinde
LB
,
Lind
C
,
Småbrekke
B
, et al
.
Impact of incident myocardial infarction on the risk of venous thromboembolism: the Tromsø Study
.
J Thromb Haemost
.
2016
;
14
(
6
):
1183
-
1191
.
33.
Timp
JF
,
Braekkan
SK
,
Versteeg
HH
,
Cannegieter
SC
.
Epidemiology of cancer-associated venous thrombosis
.
Blood
.
2013
;
122
(
10
):
1712
-
1723
.
34.
Cushman
M
,
Folsom
AR
,
Wang
L
, et al
.
Fibrin fragment D-dimer and the risk of future venous thrombosis
.
Blood
.
2003
;
101
(
4
):
1243
-
1248
.
35.
Folsom
AR
,
Alonso
A
,
George
KM
,
Roetker
NS
,
Tang
W
,
Cushman
M
.
Prospective study of plasma D-dimer and incident venous thromboembolism: The Atherosclerosis Risk in Communities (ARIC) Study
.
Thromb Res
.
2015
;
136
(
4
):
781
-
785
.
36.
Tsai
AW
,
Cushman
M
,
Rosamond
WD
, et al
.
Coagulation factors, inflammation markers, and venous thromboembolism: the longitudinal investigation of thromboembolism etiology (LITE)
.
Am J Med
.
2002
;
113
(
8
):
636
-
642
.
37.
Eggers
KM
,
Kempf
T
,
Lind
L
, et al
.
Relations of growth-differentiation factor-15 to biomarkers reflecting vascular pathologies in a population-based sample of elderly subjects
.
Scand J Clin Lab Invest
.
2012
;
72
(
1
):
45
-
51
.
38.
Clarke
R
,
Shipley
M
,
Lewington
S
, et al
.
Underestimation of risk associations due to regression dilution in long-term follow-up of prospective studies
.
Am J Epidemiol
.
1999
;
150
(
4
):
341
-
353
.
39.
Smith
GD
,
Ebrahim
S
.
“Mendelian randomization”: can genetic epidemiology contribute to understanding environmental determinants of disease?
Int J Epidemiol
.
2003
;
32
(
1
):
1
-
22
.
40.
Davey Smith
G
,
Hemani
G
.
Mendelian randomization: genetic anchors for causal inference in epidemiological studies
.
Hum Mol Genet
.
2014
;
23
(
R1
):
R89
-
R98
.
41.
Hemani
G
,
Zheng
J
,
Elsworth
B
, et al
.
The MR-Base platform supports systematic causal inference across the human phenome
.
eLife
.
2018
;
7
:
7
.
42.
Jiang
J
,
Thalamuthu
A
,
Ho
JE
, et al
.
A meta-analysis of genome-wide association studies of growth differentiation factor-15 concentration in blood
.
Front Genet
.
2018
;
9
:
97
.
43.
Germain
M
,
Chasman
DI
,
de Haan
H
, et al;
Cardiogenics Consortium
.
Meta-analysis of 65,734 individuals identifies TSPAN15 and SLC44A2 as two susceptibility loci for venous thromboembolism
.
Am J Hum Genet
.
2015
;
96
(
4
):
532
-
542
.
44.
Bowden
J
,
Davey Smith
G
,
Burgess
S
.
Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression
.
Int J Epidemiol
.
2015
;
44
(
2
):
512
-
525
.
45.
Ho
JE
,
Hwang
SJ
,
Wollert
KC
, et al
.
Biomarkers of cardiovascular stress and incident chronic kidney disease
.
Clin Chem
.
2013
;
59
(
11
):
1613
-
1620
.
46.
Brown
DA
,
Moore
J
,
Johnen
H
, et al
.
Serum macrophage inhibitory cytokine 1 in rheumatoid arthritis: a potential marker of erosive joint destruction
.
Arthritis Rheum
.
2007
;
56
(
3
):
753
-
764
.
47.
Mahmoodi
BK
,
Gansevoort
RT
,
Næss
IA
, et al
.
Association of mild to moderate chronic kidney disease with venous thromboembolism: pooled analysis of five prospective general population cohorts
.
Circulation
.
2012
;
126
(
16
):
1964
-
1971
.
You do not currently have access to this content.