Key Points

  • In vivo depletion of myeloid subsets diminishes leukemia burden in multiple organs and prolongs survival in mouse models of T-ALL.

  • Human myeloid cells promote patient T-ALL cell survival, and elevated macrophage gene signatures correlate with worse patient prognosis.

Abstract

Despite harboring mutations in oncogenes and tumor suppressors that promote cancer growth, T-cell acute lymphoblastic leukemia (T-ALL) cells require exogenous cells or signals to survive in culture. We previously reported that myeloid cells, particularly dendritic cells, from the thymic tumor microenvironment support the survival and proliferation of primary mouse T-ALL cells in vitro. Thus, we hypothesized that tumor-associated myeloid cells would support T-ALL in vivo. Consistent with this possibility, in vivo depletion of myeloid cells results in a significant reduction in leukemia burden in multiple organs in 2 distinct mouse models of T-ALL and prolongs survival. The impact of the myeloid compartment on T-ALL growth is not dependent on suppression of antitumor T-cell responses. Instead, myeloid cells provide signals that directly support T-ALL cells. Transcriptional profiling, functional assays, and acute in vivo myeloid-depletion experiments identify activation of IGF1R as a critical component of myeloid-mediated T-ALL growth and survival. We identify several myeloid subsets that have the capacity to directly support survival of T-ALL cells. Consistent with mouse models, myeloid cells derived from human peripheral blood monocytes activate IGF1R and directly support survival of primary patient T-ALL cells in vitro. Furthermore, enriched macrophage gene signatures in published clinical samples correlate with inferior outcomes for pediatric T-ALL patients. Collectively, these data reveal that tumor-associated myeloid cells provide signals critical for T-ALL growth in multiple organs in vivo and implicate tumor-associated myeloid cells and associated signals as potential therapeutic targets.

REFERENCES

REFERENCES
1.
Belver
L
,
Ferrando
A
.
The genetics and mechanisms of T cell acute lymphoblastic leukaemia
.
Nat Rev Cancer
.
2016
;
16
(
8
):
494
-
507
.
2.
Terwilliger
T
,
Abdul-Hay
M
.
Acute lymphoblastic leukemia: a comprehensive review and 2017 update
.
Blood Cancer J
.
2017
;
7
(
6
):
e577
.
3.
Ness
KK
,
Armenian
SH
,
Kadan-Lottick
N
,
Gurney
JG
.
Adverse effects of treatment in childhood acute lymphoblastic leukemia: general overview and implications for long-term cardiac health
.
Expert Rev Hematol
.
2011
;
4
(
2
):
185
-
197
.
4.
Iyer
NS
,
Balsamo
LM
,
Bracken
MB
,
Kadan-Lottick
NS
.
Chemotherapy-only treatment effects on long-term neurocognitive functioning in childhood ALL survivors: a review and meta-analysis
.
Blood
.
2015
;
126
(
3
):
346
-
353
.
5.
Hefazi
M
,
Litzow
MR
.
Recent advances in the biology and treatment of T cell acute lymphoblastic leukemia
.
Curr Hematol Malig Rep
.
2018
;
13
(
4
):
265
-
274
.
6.
McMahon
CM
,
Luger
SM
.
Relapsed T cell ALL: current approaches and new directions
.
Curr Hematol Malig Rep
.
2019
;
14
(
2
):
83
-
93
.
7.
Kadia
TM
,
Gandhi
V
.
Nelarabine in the treatment of pediatric and adult patients with T-cell acute lymphoblastic leukemia and lymphoma
.
Expert Rev Hematol
.
2017
;
10
(
1
):
1
-
8
.
8.
Malone
A
,
Smith
OP
.
Nelarabine toxicity in children and adolescents with relapsed/refractory T-ALL/T-LBL: can we avoid throwing the baby out with the bathwater?
Br J Haematol
.
2017
;
179
(
2
):
179
-
181
.
9.
Ferrando
A
.
Can one target T-cell ALL?
Best Pract Res Clin Haematol
.
2018
;
31
(
4
):
361
-
366
.
10.
Binnewies
M
,
Roberts
EW
,
Kersten
K
, et al
.
Understanding the tumor immune microenvironment (TIME) for effective therapy
.
Nat Med
.
2018
;
24
(
5
):
541
-
550
.
11.
Triplett
TA
,
Cardenas
KT
,
Lancaster
JN
, et al
.
Endogenous dendritic cells from the tumor microenvironment support T-ALL growth via IGF1R activation
.
Proc Natl Acad Sci USA
.
2016
;
113
(
8
):
E1016
-
E1025
.
12.
Armstrong
F
,
Brunet de la Grange
P
,
Gerby
B
, et al
.
NOTCH is a key regulator of human T-cell acute leukemia initiating cell activity
.
Blood
.
2009
;
113
(
8
):
1730
-
1740
.
13.
Scupoli
MT
,
Vinante
F
,
Krampera
M
, et al
.
Thymic epithelial cells promote survival of human T-cell acute lymphoblastic leukemia blasts: the role of interleukin-7
.
Haematologica
.
2003
;
88
(
11
):
1229
-
1237
.
14.
Passaro
D
,
Quang
CT
,
Ghysdael
J
.
Microenvironmental cues for T-cell acute lymphoblastic leukemia development
.
Immunol Rev
.
2016
;
271
(
1
):
156
-
172
.
15.
Silva
A
,
Laranjeira
ABA
,
Martins
LR
, et al
.
IL-7 contributes to the progression of human T-cell acute lymphoblastic leukemias
.
Cancer Res
.
2011
;
71
(
14
):
4780
-
4789
.
16.
Scupoli
MT
,
Perbellini
O
,
Krampera
M
,
Vinante
F
,
Cioffi
F
,
Pizzolo
G
.
Interleukin 7 requirement for survival of T-cell acute lymphoblastic leukemia and human thymocytes on bone marrow stroma
.
Haematologica
.
2007
;
92
(
2
):
264
-
266
.
17.
Ghezzo
MN
,
Fernandes
MT
,
Pacheco-Leyva
I
, et al
.
FoxN1-dependent thymic epithelial cells promote T-cell leukemia development
.
Carcinogenesis
.
2018
;
39
(
12
):
1463
-
1476
.
18.
Medyouf
H
,
Alcalde
H
,
Berthier
C
, et al
.
Targeting calcineurin activation as a therapeutic strategy for T-cell acute lymphoblastic leukemia
.
Nat Med
.
2007
;
13
(
6
):
736
-
741
.
19.
Winter
SS
,
Sweatman
J
,
Shuster
JJ
, et al
.
Bone marrow stroma-supported culture of T-lineage acute lymphoblastic leukemic cells predicts treatment outcome in children: a Pediatric Oncology Group study
.
Leukemia
.
2002
;
16
(
6
):
1121
-
1126
.
20.
Passaro
D
,
Irigoyen
M
,
Catherinet
C
, et al
.
CXCR4 Is required for leukemia-initiating cell activity in T cell acute lymphoblastic leukemia
.
Cancer Cell
.
2015
;
27
(
6
):
769
-
779
.
21.
Pitt
LA
,
Tikhonova
AN
,
Hu
H
, et al
.
CXCL12-producing vascular endothelial niches control acute T cell leukemia maintenance
.
Cancer Cell
.
2015
;
27
(
6
):
755
-
768
.
22.
Uzan
B
,
Poglio
S
,
Gerby
B
, et al
.
Interleukin-18 produced by bone marrow-derived stromal cells supports T-cell acute leukaemia progression
.
EMBO Mol Med
.
2014
;
6
(
6
):
821
-
834
.
23.
Zilionis
R
,
Engblom
C
,
Pfirschke
C
, et al
.
Single-cell transcriptomics of human and mouse lung cancers reveals conserved myeloid populations across individuals and species
.
Immunity
.
2019
;
50
(
5
):
1317
-
1334.e10
.
24.
Tcyganov
E
,
Mastio
J
,
Chen
E
,
Gabrilovich
DI
.
Plasticity of myeloid-derived suppressor cells in cancer
.
Curr Opin Immunol
.
2018
;
51
:
76
-
82
.
25.
Lavin
Y
,
Kobayashi
S
,
Leader
A
, et al
.
Innate immune landscape in early lung adenocarcinoma by paired single-cell analyses
.
Cell
.
2017
;
169
(
4
):
750
-
765.e17
.
26.
Arlauckas
SP
,
Garris
CS
,
Kohler
RH
, et al
.
In vivo imaging reveals a tumor-associated macrophage-mediated resistance pathway in anti-PD-1 therapy
.
Sci Transl Med
.
2017
;
9
(
389
):
eaal3604
.
27.
Georgoudaki
A-M
,
Prokopec
KE
,
Boura
VF
, et al
.
Reprogramming tumor-associated macrophages by antibody targeting inhibits cancer progression and metastasis
.
Cell Rep
.
2016
;
15
(
9
):
2000
-
2011
.
28.
Qian
B-Z
,
Li
J
,
Zhang
H
, et al
.
CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis
.
Nature
.
2011
;
475
(
7355
):
222
-
225
.
29.
Chen
S-Y
,
Yang
X
,
Feng
W-L
, et al
.
Organ-specific microenvironment modifies diverse functional and phenotypic characteristics of leukemia-associated macrophages in mouse T cell acute lymphoblastic leukemia
.
J Immunol
.
2015
;
194
(
6
):
2919
-
2929
.
30.
Yang
X
,
Feng
W
,
Wang
R
, et al
.
Hepatic leukemia-associated macrophages exhibit a pro-inflammatory phenotype in Notch1-induced acute T cell leukemia
.
Immunobiology
.
2018
;
223
(
1
):
73
-
80
.
31.
Serwold
T
,
Hochedlinger
K
,
Inlay
MA
,
Jaenisch
R
,
Weissman
IL
.
Early TCR expression and aberrant T cell development in mice with endogenous prerearranged T cell receptor genes
.
J Immunol
.
2007
;
179
(
2
):
928
-
938
.
32.
Serwold
T
,
Hochedlinger
K
,
Swindle
J
,
Hedgpeth
J
,
Jaenisch
R
,
Weissman
IL
.
T-cell receptor-driven lymphomagenesis in mice derived from a reprogrammed T cell
.
Proc Natl Acad Sci USA
.
2010
;
107
(
44
):
18939
-
18943
.
33.
Smith
S
,
Tripathi
R
,
Goodings
C
, et al
.
LIM domain only-2 (LMO2) induces T-cell leukemia by two distinct pathways
.
PLoS ONE
.
2014
;
9
(
1
):
e85883
.
34.
McKenna
HJ
,
Stocking
KL
,
Miller
RE
, et al
.
Mice lacking flt3 ligand have deficient hematopoiesis affecting hematopoietic progenitor cells, dendritic cells, and natural killer cells
.
Blood
.
2000
;
95
(
11
):
3489
-
3497
.
35.
Duffield
JS
,
Forbes
SJ
,
Constandinou
CM
, et al
.
Selective depletion of macrophages reveals distinct, opposing roles during liver injury and repair
.
J Clin Invest
.
2005
;
115
(
1
):
56
-
65
.
36.
Hao
Z
,
Rajewsky
K
.
Homeostasis of peripheral B cells in the absence of B cell influx from the bone marrow
.
J Exp Med
.
2001
;
194
(
8
):
1151
-
1164
.
37.
Lee
C-H
,
Romain
G
,
Yan
W
, et al
.
IgG Fc domains that bind C1q but not effector Fcγ receptors delineate the importance of complement-mediated effector functions [published correction appears in Nat Immunol. [2017;18(100):1173]
.
Nat Immunol
.
2017
;
18
(
8
):
889
-
898
.
38.
Repnik
U
,
Knezevic
M
,
Jeras
M
.
Simple and cost-effective isolation of monocytes from buffy coats
.
J Immunol Methods
.
2003
;
278
(
1-2
):
283
-
292
.
39.
Lacey
DC
,
Achuthan
A
,
Fleetwood
AJ
, et al
.
Defining GM-CSF- and macrophage-CSF-dependent macrophage responses by in vitro models
.
J Immunol
.
2012
;
188
(
11
):
5752
-
5765
.
40.
Hiasa
M
,
Abe
M
,
Nakano
A
, et al
.
GM-CSF and IL-4 induce dendritic cell differentiation and disrupt osteoclastogenesis through M-CSF receptor shedding by up-regulation of TNF-alpha converting enzyme (TACE)
.
Blood
.
2009
;
114
(
20
):
4517
-
4526
.
41.
Hashimoto
D
,
Chow
A
,
Greter
M
, et al
.
Pretransplant CSF-1 therapy expands recipient macrophages and ameliorates GVHD after allogeneic hematopoietic cell transplantation
.
J Exp Med
.
2011
;
208
(
5
):
1069
-
1082
.
42.
Sunderkötter
C
,
Nikolic
T
,
Dillon
MJ
, et al
.
Subpopulations of mouse blood monocytes differ in maturation stage and inflammatory response
.
J Immunol
.
2004
;
172
(
7
):
4410
-
4417
.
43.
van Rooijen
N
,
Hendrikx
E
.
Liposomes for specific depletion of macrophages from organs and tissues
.
Methods Mol Biol
.
2010
;
605
:
189
-
203
.
44.
Chow
A
,
Lucas
D
,
Hidalgo
A
, et al
.
Bone marrow CD169+ macrophages promote the retention of hematopoietic stem and progenitor cells in the mesenchymal stem cell niche
.
J Exp Med
.
2011
;
208
(
2
):
261
-
271
.
45.
Saxena
V
,
Ondr
JK
,
Magnusen
AF
,
Munn
DH
,
Katz
JD
.
The countervailing actions of myeloid and plasmacytoid dendritic cells control autoimmune diabetes in the nonobese diabetic mouse
.
J Immunol
.
2007
;
179
(
8
):
5041
-
5053
.
46.
Ramachandran
P
,
Pellicoro
A
,
Vernon
MA
, et al
.
Differential Ly-6C expression identifies the recruited macrophage phenotype, which orchestrates the regression of murine liver fibrosis
.
Proc Natl Acad Sci USA
.
2012
;
109
(
46
):
E3186
-
E3195
.
47.
Winkelmann
ER
,
Widman
DG
,
Xia
J
, et al
.
Subcapsular sinus macrophages limit dissemination of West Nile virus particles after inoculation but are not essential for the development of West Nile virus-specific T cell responses
.
Virology
.
2014
;
450-451
:
278
-
289
.
48.
Atibalentja
DF
,
Murphy
KM
,
Unanue
ER
.
Functional redundancy between thymic CD8α+ and Sirpα+ conventional dendritic cells in presentation of blood-derived lysozyme by MHC class II proteins
.
J Immunol
.
2011
;
186
(
3
):
1421
-
1431
.
49.
Alves-Rosa
F
,
Vermeulen
M
,
Cabrera
J
, et al
.
Macrophage depletion following liposomal-encapsulated clodronate (LIP-CLOD) injection enhances megakaryocytopoietic and thrombopoietic activities in mice
.
Br J Haematol
.
2003
;
121
(
1
):
130
-
138
.
50.
Mosser
DM
,
Edwards
JP
.
Exploring the full spectrum of macrophage activation [published correction appears in Nat Rev Immunol. [2010;10(6):460]
.
Nat Rev Immunol
.
2008
;
8
(
12
):
958
-
969
.
51.
Guth
AM
,
Hafeman
SD
,
Dow
SW
.
Depletion of phagocytic myeloid cells triggers spontaneous T cell- and NK cell-dependent antitumor activity
.
OncoImmunology
.
2012
;
1
(
8
):
1248
-
1257
.
52.
Liu
Y
,
Easton
J
,
Shao
Y
, et al
.
The genomic landscape of pediatric and young adult T-lineage acute lymphoblastic leukemia
.
Nat Genet
.
2017
;
49
(
8
):
1211
-
1218
.
53.
Hume
DA
,
MacDonald
KPA
.
Therapeutic applications of macrophage colony-stimulating factor-1 (CSF-1) and antagonists of CSF-1 receptor (CSF-1R) signaling
.
Blood
.
2012
;
119
(
8
):
1810
-
1820
.
54.
Aharinejad
S
,
Salama
M
,
Paulus
P
,
Zins
K
,
Berger
A
,
Singer
CF
.
Elevated CSF1 serum concentration predicts poor overall survival in women with early breast cancer
.
Endocr Relat Cancer
.
2013
;
20
(
6
):
777
-
783
.
55.
Liu
H
,
Zhang
H
,
Shen
Z
, et al
.
Increased expression of CSF-1 associates with poor prognosis of patients with gastric cancer undergoing gastrectomy
.
Medicine (Baltimore)
.
2016
;
95
(
9
):
e2675
.
56.
Spadaro
O
,
Camell
CD
,
Bosurgi
L
, et al
.
IGF1 shapes macrophage activation in response to immunometabolic challenge
.
Cell Rep
.
2017
;
19
(
2
):
225
-
234
.
57.
Link
A
,
Vogt
TK
,
Favre
S
, et al
.
Fibroblastic reticular cells in lymph nodes regulate the homeostasis of naive T cells
.
Nat Immunol
.
2007
;
8
(
11
):
1255
-
1265
.
58.
Zamisch
M
,
Moore-Scott
B
,
Su
D-M
,
Lucas
PJ
,
Manley
N
,
Richie
ER
.
Ontogeny and regulation of IL-7-expressing thymic epithelial cells
.
J Immunol
.
2005
;
174
(
1
):
60
-
67
.
You do not currently have access to this content.